
cuBLAS
Release 12.6

NVIDIA Corporation

Jul 23, 2024

Contents

1 Data Layout 3

2 New and Legacy cuBLAS API 5

3 Example Code 7

4 Using the cuBLAS API 11
4.1 General Description . 11
4.1.1 Error Status . 11
4.1.2 cuBLAS Context . 11
4.1.3 Thread Safety . 12
4.1.4 Results Reproducibility . 12
4.1.5 Scalar Parameters . 12
4.1.6 Parallelism with Streams . 13
4.1.7 Batching Kernels . 13
4.1.8 Cache Configuration . 14
4.1.9 Static Library Support . 14
4.1.10 GEMM Algorithms Numerical Behavior . 15
4.1.11 Tensor Core Usage . 15
4.1.12 CUDA Graphs Support . 16
4.1.13 64-bit Integer Interface . 16

4.2 cuBLAS Datatypes Reference . 17
4.2.1 cublasHandle_t . 17
4.2.2 cublasStatus_t . 17
4.2.3 cublasOperation_t . 19
4.2.4 cublasFillMode_t . 19
4.2.5 cublasDiagType_t . 19
4.2.6 cublasSideMode_t . 20
4.2.7 cublasPointerMode_t . 20
4.2.8 cublasAtomicsMode_t . 20
4.2.9 cublasGemmAlgo_t . 20
4.2.10 cublasMath_t . 21
4.2.11 cublasComputeType_t . 22

4.3 CUDA Datatypes Reference . 24
4.3.1 cudaDataType_t . 24
4.3.2 libraryPropertyType_t . 25

4.4 cuBLAS Helper Function Reference . 25
4.4.1 cublasCreate() . 25
4.4.2 cublasDestroy() . 26
4.4.3 cublasGetVersion() . 26
4.4.4 cublasGetProperty() . 26
4.4.5 cublasGetStatusName() . 27
4.4.6 cublasGetStatusString() . 27

i

4.4.7 cublasSetStream() . 27
4.4.8 cublasSetWorkspace() . 28
4.4.9 cublasGetStream() . 29
4.4.10 cublasGetPointerMode() . 29
4.4.11 cublasSetPointerMode() . 29
4.4.12 cublasSetVector() . 30
4.4.13 cublasGetVector() . 30
4.4.14 cublasSetMatrix() . 31
4.4.15 cublasGetMatrix() . 31
4.4.16 cublasSetVectorAsync() . 32
4.4.17 cublasGetVectorAsync() . 32
4.4.18 cublasSetMatrixAsync() . 32
4.4.19 cublasGetMatrixAsync() . 33
4.4.20 cublasSetAtomicsMode() . 33
4.4.21 cublasGetAtomicsMode() . 34
4.4.22 cublasSetMathMode() . 34
4.4.23 cublasGetMathMode() . 34
4.4.24 cublasSetSmCountTarget() . 35
4.4.25 cublasGetSmCountTarget() . 35
4.4.26 cublasLoggerConfigure() . 35
4.4.27 cublasGetLoggerCallback() . 36
4.4.28 cublasSetLoggerCallback() . 37

4.5 cuBLAS Level-1 Function Reference . 37
4.5.1 cublasI<t>amax() . 38
4.5.2 cublasI<t>amin() . 39
4.5.3 cublas<t>asum() . 40
4.5.4 cublas<t>axpy() . 41
4.5.5 cublas<t>copy() . 42
4.5.6 cublas<t>dot() . 43
4.5.7 cublas<t>nrm2() . 44
4.5.8 cublas<t>rot() . 45
4.5.9 cublas<t>rotg() . 46
4.5.10 cublas<t>rotm() . 47
4.5.11 cublas<t>rotmg() . 49
4.5.12 cublas<t>scal() . 50
4.5.13 cublas<t>swap() . 51

4.6 cuBLAS Level-2 Function Reference . 51
4.6.1 cublas<t>gbmv() . 52
4.6.2 cublas<t>gemv() . 54
4.6.3 cublas<t>ger() . 56
4.6.4 cublas<t>sbmv() . 57
4.6.5 cublas<t>spmv() . 59
4.6.6 cublas<t>spr() . 61
4.6.7 cublas<t>spr2() . 62
4.6.8 cublas<t>symv() . 64
4.6.9 cublas<t>syr() . 66
4.6.10 cublas<t>syr2() . 67
4.6.11 cublas<t>tbmv() . 69
4.6.12 cublas<t>tbsv() . 71
4.6.13 cublas<t>tpmv() . 73
4.6.14 cublas<t>tpsv() . 75
4.6.15 cublas<t>trmv() . 77
4.6.16 cublas<t>trsv() . 79
4.6.17 cublas<t>hemv() . 81

ii

4.6.18 cublas<t>hbmv() . 82
4.6.19 cublas<t>hpmv() . 84
4.6.20 cublas<t>her() . 86
4.6.21 cublas<t>her2() . 87
4.6.22 cublas<t>hpr() . 89
4.6.23 cublas<t>hpr2() . 90
4.6.24 cublas<t>gemvBatched() . 92
4.6.25 cublas<t>gemvStridedBatched() . 95

4.7 cuBLAS Level-3 Function Reference . 99
4.7.1 cublas<t>gemm() . 99
4.7.2 cublas<t>gemm3m() . 102
4.7.3 cublas<t>gemmBatched() . 104
4.7.4 cublas<t>gemmStridedBatched() . 107
4.7.5 cublas<t>gemmGroupedBatched() . 111
4.7.6 cublas<t>symm() . 114
4.7.7 cublas<t>syrk() . 117
4.7.8 cublas<t>syr2k() . 119
4.7.9 cublas<t>syrkx() . 121
4.7.10 cublas<t>trmm() . 124
4.7.11 cublas<t>trsm() . 127
4.7.12 cublas<t>trsmBatched() . 129
4.7.13 cublas<t>hemm() . 132
4.7.14 cublas<t>herk() . 134
4.7.15 cublas<t>her2k() . 136
4.7.16 cublas<t>herkx() . 138

4.8 BLAS-like Extension . 140
4.8.1 cublas<t>geam() . 140
4.8.2 cublas<t>dgmm() . 143
4.8.3 cublas<t>getrfBatched() . 145
4.8.4 cublas<t>getrsBatched() . 147
4.8.5 cublas<t>getriBatched() . 150
4.8.6 cublas<t>matinvBatched() . 152
4.8.7 cublas<t>geqrfBatched() . 154
4.8.8 cublas<t>gelsBatched() . 156
4.8.9 cublas<t>tpttr() . 159
4.8.10 cublas<t>trttp() . 160
4.8.11 cublas<t>gemmEx() . 162
4.8.12 cublasGemmEx() . 165
4.8.13 cublasGemmBatchedEx() . 169
4.8.14 cublasGemmStridedBatchedEx() . 174
4.8.15 cublasGemmGroupedBatchedEx() . 179
4.8.16 cublasCsyrkEx() . 183
4.8.17 cublasCsyrk3mEx() . 185
4.8.18 cublasCherkEx() . 187
4.8.19 cublasCherk3mEx() . 189
4.8.20 cublasNrm2Ex() . 191
4.8.21 cublasAxpyEx() . 193
4.8.22 cublasDotEx() . 194
4.8.23 cublasRotEx() . 196
4.8.24 cublasScalEx() . 198

5 Using the cuBLASLt API 201
5.1 General Description . 201
5.1.1 Problem Size Limitations . 201

iii

5.1.2 Heuristics Cache . 202
5.1.3 cuBLASLt Logging . 202
5.1.4 8-bit Floating Point Data Types (FP8) Usage . 203
5.1.5 Disabling CPU Instructions . 204
5.1.6 Atomics Synchronization . 204

5.2 cuBLASLt Code Examples . 206
5.3 cuBLASLt Datatypes Reference . 206
5.3.1 cublasLtClusterShape_t . 206
5.3.2 cublasLtEpilogue_t . 208
5.3.3 cublasLtHandle_t . 210
5.3.4 cublasLtLoggerCallback_t . 210
5.3.5 cublasLtMatmulAlgo_t . 210
5.3.6 cublasLtMatmulAlgoCapAttributes_t . 210
5.3.7 cublasLtMatmulAlgoConfigAttributes_t . 212
5.3.8 cublasLtMatmulDesc_t . 213
5.3.9 cublasLtMatmulDescAttributes_t . 213
5.3.10 cublasLtMatmulHeuristicResult_t . 215
5.3.11 cublasLtMatmulInnerShape_t . 215
5.3.12 cublasLtMatmulPreference_t . 215
5.3.13 cublasLtMatmulPreferenceAttributes_t . 216
5.3.14 cublasLtMatmulSearch_t . 217
5.3.15 cublasLtMatmulTile_t . 217
5.3.16 cublasLtMatmulStages_t . 218
5.3.17 cublasLtNumericalImplFlags_t . 219
5.3.18 cublasLtMatrixLayout_t . 221
5.3.19 cublasLtMatrixLayoutAttribute_t . 221
5.3.20 cublasLtMatrixTransformDesc_t . 223
5.3.21 cublasLtMatrixTransformDescAttributes_t . 223
5.3.22 cublasLtOrder_t . 224
5.3.23 cublasLtPointerMode_t . 224
5.3.24 cublasLtPointerModeMask_t . 225
5.3.25 cublasLtReductionScheme_t . 225

5.4 cuBLASLt API Reference . 226
5.4.1 cublasLtCreate() . 226
5.4.2 cublasLtDestroy() . 227
5.4.3 cublasLtDisableCpuInstructionsSetMask() . 228
5.4.4 cublasLtGetCudartVersion() . 228
5.4.5 cublasLtGetProperty() . 228
5.4.6 cublasLtGetStatusName() . 229
5.4.7 cublasLtGetStatusString() . 229
5.4.8 cublasLtHeuristicsCacheGetCapacity() . 229
5.4.9 cublasLtHeuristicsCacheSetCapacity() . 230
5.4.10 cublasLtGetVersion() . 230
5.4.11 cublasLtLoggerSetCallback() . 230
5.4.12 cublasLtLoggerSetFile() . 231
5.4.13 cublasLtLoggerOpenFile() . 231
5.4.14 cublasLtLoggerSetLevel() . 232
5.4.15 cublasLtLoggerSetMask() . 232
5.4.16 cublasLtLoggerForceDisable() . 233
5.4.17 cublasLtMatmul() . 233
5.4.18 cublasLtMatmulAlgoCapGetAttribute() . 238
5.4.19 cublasLtMatmulAlgoCheck() . 239
5.4.20 cublasLtMatmulAlgoConfigGetAttribute() . 240
5.4.21 cublasLtMatmulAlgoConfigSetAttribute() . 241

iv

5.4.22 cublasLtMatmulAlgoGetHeuristic() . 242
5.4.23 cublasLtMatmulAlgoGetIds() . 243
5.4.24 cublasLtMatmulAlgoInit() . 244
5.4.25 cublasLtMatmulDescCreate() . 245
5.4.26 cublasLtMatmulDescInit() . 246
5.4.27 cublasLtMatmulDescDestroy() . 246
5.4.28 cublasLtMatmulDescGetAttribute() . 247
5.4.29 cublasLtMatmulDescSetAttribute() . 248
5.4.30 cublasLtMatmulPreferenceCreate() . 249
5.4.31 cublasLtMatmulPreferenceInit() . 249
5.4.32 cublasLtMatmulPreferenceDestroy() . 250
5.4.33 cublasLtMatmulPreferenceGetAttribute() . 250
5.4.34 cublasLtMatmulPreferenceSetAttribute() . 251
5.4.35 cublasLtMatrixLayoutCreate() . 252
5.4.36 cublasLtMatrixLayoutInit() . 253
5.4.37 cublasLtMatrixLayoutDestroy() . 254
5.4.38 cublasLtMatrixLayoutGetAttribute() . 254
5.4.39 cublasLtMatrixLayoutSetAttribute() . 255
5.4.40 cublasLtMatrixTransform() . 256
5.4.41 cublasLtMatrixTransformDescCreate() . 257
5.4.42 cublasLtMatrixTransformDescInit() . 258
5.4.43 cublasLtMatrixTransformDescDestroy() . 259
5.4.44 cublasLtMatrixTransformDescGetAttribute() . 259
5.4.45 cublasLtMatrixTransformDescSetAttribute() . 260

6 Using the cuBLASXt API 263
6.1 General description . 263
6.1.1 Tiling design approach . 263
6.1.2 Hybrid CPU-GPU computation . 265
6.1.3 Results reproducibility . 265

6.2 cuBLASXt API Datatypes Reference . 265
6.2.1 cublasXtHandle_t . 265
6.2.2 cublasXtOpType_t . 266
6.2.3 cublasXtBlasOp_t . 266
6.2.4 cublasXtPinningMemMode_t . 267

6.3 cuBLASXt API Helper Function Reference . 267
6.3.1 cublasXtCreate() . 267
6.3.2 cublasXtDestroy() . 267
6.3.3 cublasXtDeviceSelect() . 268
6.3.4 cublasXtSetBlockDim() . 268
6.3.5 cublasXtGetBlockDim() . 268
6.3.6 cublasXtSetCpuRoutine() . 269
6.3.7 cublasXtSetCpuRatio() . 269
6.3.8 cublasXtSetPinningMemMode() . 269
6.3.9 cublasXtGetPinningMemMode() . 270

6.4 cuBLASXt API Math Functions Reference . 270
6.4.1 cublasXt<t>gemm() . 271
6.4.2 cublasXt<t>hemm() . 273
6.4.3 cublasXt<t>symm() . 275
6.4.4 cublasXt<t>syrk() . 277
6.4.5 cublasXt<t>syr2k() . 279
6.4.6 cublasXt<t>syrkx() . 281
6.4.7 cublasXt<t>herk() . 283
6.4.8 cublasXt<t>her2k() . 285

v

6.4.9 cublasXt<t>herkx() . 287
6.4.10 cublasXt<t>trsm() . 289
6.4.11 cublasXt<t>trmm() . 291
6.4.12 cublasXt<t>spmm() . 293

7 Using the cuBLASDx API 297

8 Using the cuBLAS Legacy API 299
8.1 Error Status . 299
8.2 Initialization and Shutdown . 300
8.3 Thread Safety . 300
8.4 Memory Management . 300
8.5 Scalar Parameters . 300
8.6 Helper Functions . 301
8.7 Level-1,2,3 Functions . 301
8.8 Converting Legacy to the cuBLAS API . 301
8.9 Examples . 302

9 cuBLAS Fortran Bindings 307

10 Interaction with Other Libraries and Tools 311
10.1 nvprune . 311

11 Acknowledgements 313

12 Notices 315
12.1 Notice . 315
12.2 OpenCL . 316
12.3 Trademarks . 316

vi

cuBLAS, Release 12.6

cuBLAS

The API Reference guide for cuBLAS, the CUDA Basic Linear Algebra Subroutine library.

The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top of the
NVIDIA®CUDA™ runtime. It allows the user to access the computational resources of NVIDIA Graphics
Processing Unit (GPU).

The cuBLAS Library exposes four sets of APIs:

▶ The cuBLAS API, which is simply called cuBLAS API in this document (starting with CUDA 6.0),

▶ The cuBLASXt API (starting with CUDA 6.0), and

▶ The cuBLASLt API (starting with CUDA 10.1)

▶ The cuBLASDx API (not shipped with the CUDA Toolkit)

To use the cuBLAS API, the application must allocate the required matrices and vectors in the GPU
memory space, fill themwith data, call the sequence of desired cuBLAS functions, and then upload the
results from the GPU memory space back to the host. The cuBLAS API also provides helper functions
for writing and retrieving data from the GPU.

To use the cuBLASXt API, the application may have the data on the Host or any of the devices involved
in the computation, and the Library will take care of dispatching the operation to, and transferring the
data to, one or multiple GPUs present in the system, depending on the user request.

The cuBLASLt is a lightweight library dedicated to GEneral Matrix-to-matrix Multiply (GEMM) opera-
tions with a new flexible API. This library adds flexibility in matrix data layouts, input types, compute
types, and also in choosing the algorithmic implementations and heuristics through parameter pro-
grammability. After a set of options for the intended GEMM operation are identified by the user, these
options can be used repeatedly for different inputs. This is analogous to how cuFFT and FFTW first
create a plan and reuse for same size and type FFTs with different input data.

Contents 1

cuBLAS, Release 12.6

2 Contents

Chapter 1. Data Layout

Formaximum compatibility with existing Fortran environments, the cuBLAS library uses column-major
storage, and 1-based indexing. Since C and C++ use row-major storage, applications written in these
languages can not use the native array semantics for two-dimensional arrays. Instead, macros or inline
functions should be defined to implement matrices on top of one-dimensional arrays. For Fortran
code ported to C in mechanical fashion, one may chose to retain 1-based indexing to avoid the need
to transform loops. In this case, the array index of a matrix element in row “i” and column “j” can be
computed via the following macro

#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

Here, ld refers to the leading dimension of the matrix, which in the case of column-major storage is
the number of rows of the allocated matrix (even if only a submatrix of it is being used). For natively
written C and C++ code, one would most likely choose 0-based indexing, in which case the array index
of a matrix element in row “i” and column “j” can be computed via the following macro

#define IDX2C(i,j,ld) (((j)*(ld))+(i))

3

cuBLAS, Release 12.6

4 Chapter 1. Data Layout

Chapter 2. New and Legacy cuBLAS API

Starting with version 4.0, the cuBLAS Library provides a new API, in addition to the existing legacy API.
This section discusses why a new API is provided, the advantages of using it, and the differences with
the existing legacy API.

Warning: The legacy cuBLAS API is deprecated and will be removed in future release.

The new cuBLAS library API can be used by including the header file cublas_v2.h. It has the following
features that the legacy cuBLAS API does not have:

▶ The handle to the cuBLAS library context is initialized using the function and is explicitly passed
to every subsequent library function call. This allows the user to have more control over the
library setup when using multiple host threads and multiple GPUs. This also allows the cuBLAS
APIs to be reentrant.

▶ The scalars α and β can be passed by reference on the host or the device, instead of only be-
ing allowed to be passed by value on the host. This change allows library functions to execute
asynchronously using streams even when α and β are generated by a previous kernel.

▶ When a library routine returns a scalar result, it can be returned by reference on the host or the
device, instead of only being allowed to be returned by value only on the host. This change allows
library routines to be called asynchronously when the scalar result is generated and returned by
reference on the device resulting in maximum parallelism.

▶ The error status cublasStatus_t is returned by all cuBLAS library function calls. This change
facilitates debugging and simplifies software development. Note that cublasStatus was re-
named cublasStatus_t to be more consistent with other types in the cuBLAS library.

▶ The cublasAlloc() and cublasFree() functions have been deprecated. This change removes
these unnecessary wrappers around cudaMalloc() and cudaFree(), respectively.

▶ The function cublasSetKernelStream() was renamed cublasSetStream() to be more con-
sistent with the other CUDA libraries.

The legacy cuBLAS API, explained in more detail in Using the cuBLAS Legacy API, can be used by in-
cluding the header file cublas.h. Since the legacy API is identical to the previously released cuBLAS
library API, existing applications will work out of the box and automatically use this legacy API without
any source code changes.

The current and the legacy cuBLAS APIs cannot be used simultaneously in a single translation unit:
including both cublas.h and cublas_v2.h header files will lead to compilation errors due to incom-
patible symbol redeclarations.

In general, new applications should not use the legacy cuBLAS API, and existing applications should
convert to using the new API if it requires sophisticated and optimal stream parallelism, or if it calls

5

cuBLAS, Release 12.6

cuBLAS routines concurrently from multiple threads.

For the rest of the document, the new cuBLAS Library API will simply be referred to as the cuBLAS
Library API.

As mentioned earlier the interfaces to the legacy and the cuBLAS library APIs are the header file
cublas.h and cublas_v2.h, respectively. In addition, applications using the cuBLAS library need
to link against:

▶ The DSO cublas.so for Linux,

▶ The DLL cublas.dll for Windows, or

▶ The dynamic library cublas.dylib for Mac OS X.

Note: The same dynamic library implements both the new and legacy cuBLAS APIs.

6 Chapter 2. New and Legacy cuBLAS API

Chapter 3. Example Code

For sample code references please see the two examples below. They show an application written in
C using the cuBLAS library API with two indexing styles (Example 1. “Application Using C and cuBLAS:
1-based indexing” and Example 2. “Application Using C and cuBLAS: 0-based Indexing”).

∕∕Example 1. Application Using C and cuBLAS: 1-based indexing
∕∕---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#define M 6
#define N 5
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int n, int p,
↪→ int q, float alpha, float beta){

cublasSscal (handle, n-q+1, &alpha, &m[IDX2F(p,q,ldm)], ldm);
cublasSscal (handle, ldm-p+1, &beta, &m[IDX2F(p,q,ldm)], 1);

}

int main (void){
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;
int i, j;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if (!a) {

printf ("host memory allocation failed");
return EXIT_FAILURE;

}
for (j = 1; j <= N; j++) {

for (i = 1; i <= M; i++) {
a[IDX2F(i,j,M)] = (float)((i-1) * N + j);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat != cudaSuccess) {

printf ("device memory allocation failed");
free (a);
return EXIT_FAILURE;

}
(continues on next page)

7

cuBLAS, Release 12.6

(continued from previous page)

stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("CUBLAS initialization failed\n");
free (a);
cudaFree (devPtrA);
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data download failed");
free (a);
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");
free (a);
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
cudaFree (devPtrA);
cublasDestroy(handle);
for (j = 1; j <= N; j++) {

for (i = 1; i <= M; i++) {
printf ("%7.0f", a[IDX2F(i,j,M)]);

}
printf ("\n");

}
free(a);
return EXIT_SUCCESS;

}

∕∕Example 2. Application Using C and cuBLAS: 0-based indexing
∕∕---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int n, int p,
↪→ int q, float alpha, float beta){

cublasSscal (handle, n-q, &alpha, &m[IDX2C(p,q,ldm)], ldm);
cublasSscal (handle, ldm-p, &beta, &m[IDX2C(p,q,ldm)], 1);

}

int main (void){
cudaError_t cudaStat;

(continues on next page)

8 Chapter 3. Example Code

cuBLAS, Release 12.6

(continued from previous page)

cublasStatus_t stat;
cublasHandle_t handle;
int i, j;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if (!a) {

printf ("host memory allocation failed");
return EXIT_FAILURE;

}
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {
a[IDX2C(i,j,M)] = (float)(i * N + j + 1);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat != cudaSuccess) {

printf ("device memory allocation failed");
free (a);
return EXIT_FAILURE;

}
stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("CUBLAS initialization failed\n");
free (a);
cudaFree (devPtrA);
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data download failed");
free (a);
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");
free (a);
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
cudaFree (devPtrA);
cublasDestroy(handle);
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {
printf ("%7.0f", a[IDX2C(i,j,M)]);

}
printf ("\n");

}
free(a);
return EXIT_SUCCESS;

}

9

cuBLAS, Release 12.6

10 Chapter 3. Example Code

Chapter 4. Using the cuBLAS API

4.1. General Description

This section describes how to use the cuBLAS library API.

4.1.1. Error Status

All cuBLAS library function calls return the error status cublasStatus_t.

4.1.2. cuBLAS Context

The application must initialize a handle to the cuBLAS library context by calling the cublasCreate()
function. Then, the handle is explicitly passed to every subsequent library function call. Once the
application finishes using the library, it must call the function cublasDestroy() to release the resources
associated with the cuBLAS library context.

This approach allows the user to explicitly control the library setup when using multiple host threads
and multiple GPUs. For example, the application can use cudaSetDevice() to associate different
devices with different host threads and in each of those host threads it can initialize a unique handle
to the cuBLAS library context, which will use the particular device associated with that host thread.
Then, the cuBLAS library function calls made with different handles will automatically dispatch the
computation to different devices.

The device associated with a particular cuBLAS context is assumed to remain unchanged between
the corresponding cublasCreate() and cublasDestroy() calls. In order for the cuBLAS library to use a
different device in the same host thread, the application must set the new device to be used by calling
cudaSetDevice() and then create another cuBLAS context, which will be associated with the new
device, by calling cublasCreate().

A cuBLAS library context is tightly coupled with the CUDA context that is current at the time of the
cublasCreate() call. An application that uses multiple CUDA contexts is required to create a cuBLAS
context per CUDA context and make sure the former never outlives the latter.

11

cuBLAS, Release 12.6

4.1.3. Thread Safety

The library is thread safe and its functions can be called from multiple host threads, even with the
same handle. When multiple threads share the same handle, extreme care needs to be taken when
the handle configuration is changed because that change will affect potentially subsequent cuBLAS
calls in all threads. It is even more true for the destruction of the handle. So it is not recommended
that multiple thread share the same cuBLAS handle.

4.1.4. Results Reproducibility

By design, all cuBLAS API routines from a given toolkit version, generate the same bit-wise results at
every run when executed on GPUs with the same architecture and the same number of SMs. However,
bit-wise reproducibility is not guaranteed across toolkit versions because the implementation might
differ due to some implementation changes.

This guarantee holds when a single CUDA stream is active only. If multiple concurrent streams are
active, the library may optimize total performance by picking different internal implementations.

Note: The non-deterministic behavior of multi-stream execution is due to library optimizations in
selecting internal workspace for the routines running in parallel streams. To avoid this effect user can
either:

▶ provide a separate workspace for each used stream using the cublasSetWorkspace() function, or

▶ have one cuBLAS handle per stream, or

▶ use cublasLtMatmul() instead of GEMM-family of functions and provide user owned workspace,
or

▶ set a debug environment variable CUBLAS_WORKSPACE_CONFIG to :16:8 (may limit overall per-
formance) or :4096:8 (will increase library footprint in GPU memory by approximately 24MiB).

Any of those settings will allow for deterministic behavior even withmultiple concurrent streams shar-
ing a single cuBLAS handle.

This behavior is expected to change in a future release.

For some routines such as cublas<t>symv and cublas<t>hemv, an alternate significantly faster routine
can be chosen using the routine cublasSetAtomicsMode(). In that case, the results are not guaranteed
to be bit-wise reproducible because atomics are used for the computation.

4.1.5. Scalar Parameters

There are two categories of the functions that use scalar parameters :

▶ Functions that take alpha and/or beta parameters by reference on the host or the device as
scaling factors, such as gemm.

▶ Functions that return a scalar result on the host or the device such as amax(), amin, asum(),
rotg(), rotmg(), dot() and nrm2().

12 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

For the functions of the first category, when the pointermode is set to CUBLAS_POINTER_MODE_HOST,
the scalar parameters alpha and/or beta can be on the stack or allocated on the heap, shouldn’t be
placed inmanagedmemory. Underneath, the CUDA kernels related to those functions will be launched
with the value of alpha and/or beta. Therefore if they were allocated on the heap, they can be freed
just after the return of the call even though the kernel launch is asynchronous. When the pointermode
is set to CUBLAS_POINTER_MODE_DEVICE, alpha and/or beta must be accessible on the device and
their values should not be modified until the kernel is done. Note that since cudaFree() does an
implicit cudaDeviceSynchronize(), cudaFree() can still be called on alpha and/or beta just after
the call but it would defeat the purpose of using this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions block the CPU, until the GPU has completed its
computation and the results have been copied back to the Host. When the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE, these functions return immediately. In this case, similar to matrix
and vector results, the scalar result is ready only when execution of the routine on the GPU has
completed. This requires proper synchronization in order to read the result from the host.

In either case, the pointer mode CUBLAS_POINTER_MODE_DEVICE allows the library functions to ex-
ecute completely asynchronously from the Host even when alpha and/or beta are generated by a
previous kernel. For example, this situation can arise when iterative methods for solution of linear
systems and eigenvalue problems are implemented using the cuBLAS library.

4.1.6. Parallelism with Streams

If the application uses the results computed by multiple independent tasks, CUDA™ streams can be
used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to achieve the over-
lap of computation between the tasks, the user should create CUDA™ streams using the function
cudaStreamCreate() and set the stream to be used by each individual cuBLAS library routine by
calling cublasSetStream() just before calling the actual cuBLAS routine. Note that cublasSetStream()
resets the user-provided workspace to the default workspace pool; see cublasSetWorkspace(). Then,
the computation performed in separate streams would be overlapped automatically when possible
on the GPU. This approach is especially useful when the computation performed by a single task is
relatively small and is not enough to fill the GPU with work.

We recommend using the new cuBLAS API with scalar parameters and results passed by reference in
the device memory to achieve maximum overlap of the computation when using streams.

A particular application of streams, batching of multiple small kernels, is described in the following
section.

4.1.7. Batching Kernels

In this section, we explain how to use streams to batch the execution of small kernels. For instance,
suppose that we have an application where we need to make many small independent matrix-matrix
multiplications with dense matrices.

It is clear that even withmillions of small independentmatrices we will not be able to achieve the same
GFLOPS rate as with a one large matrix. For example, a single n× n large matrix-matrix multiplication
performs n3 operations for n2 input size, while 1024 n

32×
n
32 small matrix-matrixmultiplications perform

1024
(

n
32

)3
= n3

32 operations for the same input size. However, it is also clear that we can achieve a

4.1. General Description 13

cuBLAS, Release 12.6

significantly better performance with many small independent matrices compared with a single small
matrix.

The architecture family of GPUs allows us to execute multiple kernels simultaneously. Hence, in or-
der to batch the execution of independent kernels, we can run each of them in a separate stream.
In particular, in the above example we could create 1024 CUDA™ streams using the function cud-
aStreamCreate(), then preface each call to cublas<t>gemm() with a call to cublasSetStream() with
a different stream for each of the matrix-matrix multiplications (note that cublasSetStream() resets
user-provided workspace to the default workspace pool, see cublasSetWorkspace()). This will ensure
that when possible the different computations will be executed concurrently. Although the user can
create many streams, in practice it is not possible to have more than 32 concurrent kernels executing
at the same time.

4.1.8. Cache Configuration

On some devices, L1 cache and shared memory use the same hardware resources. The cache config-
uration can be set directly with the CUDA Runtime function cudaDeviceSetCacheConfig. The cache
configuration can also be set specifically for some functions using the routine cudaFuncSetCacheCon-
fig. Please refer to the CUDA Runtime API documentation for details about the cache configuration
settings.

Because switching from one configuration to another can affect kernels concurrency, the cuBLAS
Library does not set any cache configuration preference and relies on the current setting. However,
some cuBLAS routines, especially Level-3 routines, rely heavily on shared memory. Thus the cache
preference setting might affect adversely their performance.

4.1.9. Static Library Support

The cuBLAS Library is also delivered in a static form as libcublas_static.a on Linux. The static
cuBLAS library and all other static math libraries depend on a common thread abstraction layer library
called libculibos.a.

For example, on Linux, to compile a small application using cuBLAS, against the dynamic library, the
following command can be used:

nvcc myCublasApp.c -lcublas -o myCublasApp

Whereas to compile against the static cuBLAS library, the following command must be used:

nvcc myCublasApp.c -lcublas_static -lculibos -o myCublasApp

It is also possible to use the native Host C++ compiler. Depending on the Host operating system, some
additional libraries like pthread or dlmight be needed on the linking line. The following command on
Linux is suggested :

g++ myCublasApp.c -lcublas_static -lculibos -lcudart_static -lpthread -ldl -I
↪→<cuda-toolkit-path>∕include -L <cuda-toolkit-path>∕lib64 -o myCublasApp

Note that in the latter case, the library cuda is not needed. The CUDARuntimewill try to open explicitly
the cuda library if needed. In the case of a system which does not have the CUDA driver installed, this
allows the application to gracefullymanage this issue and potentially run if a CPU-only path is available.

14 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Starting with release 11.2, using the typed functions instead of the extension functions (cublas**Ex())
helps in reducing the binary size when linking to static cuBLAS Library.

4.1.10. GEMM Algorithms Numerical Behavior

Some GEMM algorithms split the computation along the dimension K to increase the GPU occupancy,
especially when the dimension K is large compared to dimensions M and N. When this type of algo-
rithm is chosen by the cuBLAS heuristics or explicitly by the user, the results of each split is summed
deterministically into the resulting matrix to get the final result.

For the routines cublas<t>gemmEx and cublasGemmEx(), when the compute type is greater than the
output type, the sum of the split chunks can potentially lead to some intermediate overflows thus
producing a final resulting matrix with some overflows. Those overflows might not have occurred if
all the dot products had been accumulated in the compute type before being converted at the end
in the output type. This computation side-effect can be easily exposed when the computeType is
CUDA_R_32F and Atype, Btype and Ctype are in CUDA_R_16F. This behavior can be controlled us-
ing the compute precision mode CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION with
cublasSetMathMode()

4.1.11. Tensor Core Usage

Tensor coreswerefirst introducedwith VoltaGPUs (compute capability 7.0 and above) and significantly
accelerate matrix multiplications. Starting with cuBLAS version 11.0.0, the library may automatically
make use of Tensor Core capabilities wherever possible, unless they are explicitly disabled by selecting
pedantic compute modes in cuBLAS (see cublasSetMathMode(), cublasMath_t).

It should be noted that the library will pick a Tensor Core enabled implementation wherever it deter-
mines that it would provide the best performance.

The best performance when using Tensor Cores can be achieved when the matrix dimensions and
pointers meet certain memory alignment requirements. Specifically, all of the following conditions
must be satisfied to get the most performance out of Tensor Cores:

▶ ((op_A == CUBLAS_OP_N ? m : k) * AtypeSize) % 16 == 0

▶ ((op_B == CUBLAS_OP_N ? k : n) * BtypeSize) % 16 == 0

▶ (m * CtypeSize) % 16 == 0

▶ (lda * AtypeSize) % 16 == 0

▶ (ldb * BtypeSize) % 16 == 0

▶ (ldc * CtypeSize) % 16 == 0

▶ intptr_t(A) % 16 == 0

▶ intptr_t(B) % 16 == 0

▶ intptr_t(C) % 16 == 0

To conduct matrix multiplication with FP8 types (see 8-bit Floating Point Data Types (FP8) Usage), you
must ensure that your matrix dimensions and pointers meet the optimal requirements listed above.
Aside from FP8, there are no longer any restrictions on matrix dimensions and memory alignments to
use Tensor Cores (starting with cuBLAS version 11.0.0).

4.1. General Description 15

cuBLAS, Release 12.6

4.1.12. CUDA Graphs Support

cuBLAS routines can be captured in CUDA Graph stream capture without restrictions in most situa-
tions.

The exception are routines that output results into host buffers (e.g. cublas<t>dot while pointer mode
CUBLAS_POINTER_MODE_HOST is configured), as it enforces synchronization.

For input coefficients (such as alpha, beta) behavior depends on the pointer mode setting:

▶ In the case of CUBLAS(LT)_POINTER_MODE_HOST, coefficient values are captured in the graph.

▶ In the case of pointer modes with device pointers, coefficient value is accessed using the device
pointer at the time of graph execution.

Note: When captured in CUDA Graph stream capture, cuBLAS routines can create memory nodes
through the use of stream-ordered allocation APIs, cudaMallocAsync and cudaFreeAsync. How-
ever, as there is currently no support for memory nodes in child graphs or graphs launched from the
device, attempts to capture cuBLAS routines in such scenarios may fail. To avoid this issue, use the
cublasSetWorkspace() function to provide user-owned workspace memory.

4.1.13. 64-bit Integer Interface

cuBLAS version 12 introduced 64-bit integer capable functions. Each 64-bit integer function is equiv-
alent to a 32-bit integer function with the following changes:

▶ The function name has _64 suffix.

▶ The dimension (problem size) data type changed from int to int64_t. Examples of dimension:
m, n, and k.

▶ The leading dimension data type changed from int to int64_t. Examples of leading dimension:
lda, ldb, and ldc.

▶ The vector increment data type changed from int to int64_t. Examples of vector increment:
incx and incy.

For example, consider the following 32-bit integer functions:

cublasStatus_t cublasSetMatrix(int rows, int cols, int elemSize, const void *A, int�
↪→lda, void *B, int ldb);
cublasStatus_t cublasIsamax(cublasHandle_t handle, int n, const float *x, int incx,�
↪→int *result);
cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo, int n, const�
↪→float *alpha, const float *x, int incx, float *A, int lda);

The equivalent 64-bit integer functions are:

cublasStatus_t cublasSetMatrix_64(int64_t rows, int64_t cols, int64_t elemSize, const�
↪→void *A, int64_t lda, void *B, int64_t ldb);
cublasStatus_t cublasIsamax_64(cublasHandle_t handle, int64_t n, const float *x,�
↪→int64_t incx, int64_t *result);
cublasStatus_t cublasSsyr_64(cublasHandle_t handle, cublasFillMode_t uplo, int64_t n,�
↪→const float *alpha, const float *x, int64_t incx, float *A, int64_t lda);

16 Chapter 4. Using the cuBLAS API

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#node-types
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch

cuBLAS, Release 12.6

Not every function has a 64-bit integer equivalent. For instance, cublasSetMathMode() doesn’t have
any arguments that could meaningfully be int64_t. For documentation brevity, the 64-bit integer
APIs are not explicitly listed, but only mentioned that they exist for the relevant functions.

4.2. cuBLAS Datatypes Reference

4.2.1. cublasHandle_t

The cublasHandle_t type is a pointer type to an opaque structure holding the cuBLAS library context.
The cuBLAS library context must be initialized using cublasCreate() and the returned handle must be
passed to all subsequent library function calls. The context should be destroyed at the end using
cublasDestroy().

4.2.2. cublasStatus_t

The type is used for function status returns. All cuBLAS library functions return their status, which
can have the following values.

4.2. cuBLAS Datatypes Reference 17

cuBLAS, Release 12.6

Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZEDThe cuBLAS library was not initialized. This is usually caused by the
lack of a prior cublasCreate() call, an error in the CUDA Runtime API
called by the cuBLAS routine, or an error in the hardware setup.
To correct: call cublasCreate() before the function call; and check that
the hardware, an appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_STATUS_ALLOC_FAILEDResource allocation failed inside the cuBLAS library. This is usually
caused by a cudaMalloc() failure.
To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUBLAS_STATUS_INVALID_VALUEAnunsupported value or parameterwas passed to the function (a neg-
ative vector size, for example).
To correct: ensure that all the parameters being passed have valid val-
ues.

CUBLAS_STATUS_ARCH_MISMATCHThe function requires a feature absent from the device architecture;
usually caused by compute capability lower than 5.0.
To correct: compile and run the application on a device with appropri-
ate compute capability.

CUBLAS_STATUS_MAPPING_ERRORAn access to GPU memory space failed, which is usually caused by a
failure to bind a texture.
To correct: before the function call, unbind any previously bound tex-
tures.

CUBLAS_STATUS_EXECUTION_FAILEDThe GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple rea-
sons.
To correct: check that the hardware, an appropriate version of the
driver, and the cuBLAS library are correctly installed.

CUBLAS_STATUS_INTERNAL_ERRORAn internal cuBLAS operation failed. This error is usually caused by a
cudaMemcpyAsync() failure.
To correct: check that the hardware, an appropriate version of the
driver, and the cuBLAS library are correctly installed. Also, check that
the memory passed as a parameter to the routine is not being deallo-
cated prior to the routine’s completion.

CUBLAS_STATUS_NOT_SUPPORTEDThe functionality requested is not supported.

CUBLAS_STATUS_LICENSE_ERRORThe functionality requested requires some license and an error was
detected when trying to check the current licensing. This error can
happen if the license is not present or is expired or if the environment
variable NVIDIA_LICENSE_FILE is not set properly.

18 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.2.3. cublasOperation_t

The cublasOperation_t type indicates which operation needs to be performed with the dense matrix.
Its values correspond to Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’ or ‘t’ (transpose) and
‘C’ or ‘c’ (conjugate transpose) that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_OP_N The non-transpose operation is selected.

CUBLAS_OP_T The transpose operation is selected.

CUBLAS_OP_C The conjugate transpose operation is selected.

4.2.4. cublasFillMode_t

The type indicates which part (lower or upper) of the dense matrix was filled and consequently should
be used by the function. Its values correspond to Fortran characters L or l (lower) and U or u (upper)
that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_FILL_MODE_LOWER The lower part of the matrix is filled.

CUBLAS_FILL_MODE_UPPER The upper part of the matrix is filled.

CUBLAS_FILL_MODE_FULL The full matrix is filled.

4.2.5. cublasDiagType_t

The type indicates whether the main diagonal of the dense matrix is unity and consequently should
not be touched or modified by the function. Its values correspond to Fortran characters ‘N’ or ‘n’
(non-unit) and ‘U’ or ‘u’ (unit) that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_DIAG_NON_UNIT The matrix diagonal has non-unit elements.

CUBLAS_DIAG_UNIT The matrix diagonal has unit elements.

4.2. cuBLAS Datatypes Reference 19

cuBLAS, Release 12.6

4.2.6. cublasSideMode_t

The type indicates whether the dense matrix is on the left or right side in the matrix equation solved
by a particular function. Its values correspond to Fortran characters ‘L’ or ‘l’ (left) and ‘R’ or ‘r’
(right) that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_SIDE_LEFT The matrix is on the left side in the equation.

CUBLAS_SIDE_RIGHT The matrix is on the right side in the equation.

4.2.7. cublasPointerMode_t

The cublasPointerMode_t type indicates whether the scalar values are passed by reference on the host
or device. It is important to point out that if several scalar values are present in the function call, all
of them must conform to the same single pointer mode. The pointer mode can be set and retrieved
using cublasSetPointerMode() and cublasGetPointerMode() routines, respectively.

Value Meaning

CUBLAS_POINTER_MODE_HOST The scalars are passed by reference on the host.

CUBLAS_POINTER_MODE_DEVICE The scalars are passed by reference on the device.

4.2.8. cublasAtomicsMode_t

The type indicates whether cuBLAS routines which has an alternate implementation using atomics
can be used. The atomics mode can be set and queried using cublasSetAtomicsMode() and cublasGe-
tAtomicsMode() and routines, respectively.

Value Meaning

CUBLAS_ATOMICS_NOT_ALLOWED The usage of atomics is not allowed.

CUBLAS_ATOMICS_ALLOWED The usage of atomics is allowed.

4.2.9. cublasGemmAlgo_t

cublasGemmAlgo_t type is an enumerant to specify the algorithm for matrix-matrix multiplication on
GPU architectures up to sm_75. On sm_80 and newer GPU architectures, this enumarant has no effect.
cuBLAS has the following algorithm options:

20 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Value Meaning

CUBLAS_GEMM_DEFAULT Apply Heuristics to select the GEMM algorithm

CUBLAS_GEMM_ALGO0 to
CUBLAS_GEMM_ALGO23

Explicitly choose an Algorithm [0,23]. Note:
Doesn’t have effect onNVIDIA Ampere architecture
GPUs and newer.

CUBLAS_GEMM_DEFAULT_TENSOR_OP[DEPRECATED]This mode is deprecated and will be removed in
a future release. Apply Heuristics to select the
GEMM algorithm, while allowing use of reduced
precision CUBLAS_COMPUTE_32F_FAST_16F ker-
nels (for backward compatibility).

CUBLAS_GEMM_ALGO0_TENSOR_OP to
CUBLAS_GEMM_ALGO15_TENSOR_OP[DEPRECATED]

Those values are deprecated and will be removed
in a future release. Explicitly choose a Tensor core
GEMMAlgorithm [0,15]. Allows use of reduced pre-
cision CUBLAS_COMPUTE_32F_FAST_16F kernels
(for backward compatibility). Note: Doesn’t have
effect on NVIDIA Ampere architecture GPUs and
newer.

4.2.10. cublasMath_t

cublasMath_t enumerate type is used in cublasSetMathMode() to choose compute precision modes as
defined in the following table. Since this setting does not directly control the use of Tensor Cores, the
mode CUBLAS_TENSOR_OP_MATH is being deprecated, and will be removed in a future release.

4.2. cuBLAS Datatypes Reference 21

cuBLAS, Release 12.6

Value Meaning

CUBLAS_DEFAULT_MATH This is the default and highest-performancemode that uses
compute and intermediate storage precisions with at least
the same number of mantissa and exponent bits as re-
quested. Tensor Cores will be used whenever possible.

CUBLAS_PEDANTIC_MATH This mode uses the prescribed precision and standardized
arithmetic for all phases of calculations and is primarily in-
tended for numerical robustness studies, testing, and de-
bugging. This mode might not be as performant as the
other modes.

CUBLAS_TF32_TENSOR_OP_MATH Enable acceleration of single-precision routines using TF32
tensor cores.

CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTIONForces any reductions during matrix multiplications to use
the accumulator type (that is, compute type) and not the
output type in case of mixed precision routines where out-
put type precision is less than the compute type precision.
This is a flag that can be set (using a bitwise or operation)
alongside any of the other values.

CUBLAS_TENSOR_OP_MATH [DEPRE-
CATED]

This mode is deprecated and will be removed in a future
release. Allows the library to use Tensor Core operations
whenever possible. For single precision GEMM routines
cuBLAS will use the CUBLAS_COMPUTE_32F_FAST_16F
compute type.

4.2.11. cublasComputeType_t

cublasComputeType_t enumerate type is used in cublasGemmEx() and cublasLtMatmul() (including all
batched and strided batched variants) to choose compute precision modes as defined below.

22 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Value Meaning

CUBLAS_COMPUTE_16F This is the default and highest-performance mode for 16-bit half preci-
sion floating point and all compute and intermediate storage precisions
with at least 16-bit half precision. Tensor Cores will be used whenever
possible.

CUBLAS_COMPUTE_16F_PEDANTICThis mode uses 16-bit half precision floating point standardized arith-
metic for all phases of calculations and is primarily intended for numer-
ical robustness studies, testing, and debugging. This mode might not
be as performant as the other modes since it disables use of tensor
cores.

CUBLAS_COMPUTE_32F This is the default 32-bit single precision floating point and uses com-
pute and intermediate storage precisions of at least 32-bits.

CUBLAS_COMPUTE_32F_PEDANTICUses 32-bit single precision floatin point arithmetic for all phases of cal-
culations and also disables algorithmic optimizations such as Gaussian
complexity reduction (3M).

CUBLAS_COMPUTE_32F_FAST_16FAllows the library to use Tensor Cores with automatic down-conversion
and 16-bit half-precision compute for 32-bit input and outputmatrices.

CUBLAS_COMPUTE_32F_FAST_16BFAllows the library to use Tensor Cores with automatic down-convesion
and bfloat16 compute for 32-bit input and output matrices. See Alter-
nate Floating Point section for more details on bfloat16.

CUBLAS_COMPUTE_32F_FAST_TF32Allows the library to use Tensor Cores with TF32 compute for 32-bit in-
put and output matrices. See Alternate Floating Point section for more
details on TF32 compute.

CUBLAS_COMPUTE_64F This is the default 64-bit double precision floating point and uses com-
pute and intermediate storage precisions of at least 64-bits.

CUBLAS_COMPUTE_64F_PEDANTICUses 64-bit double precision floatin point arithmetic for all phases of
calculations and also disables algorithmic optimizations such as Gaus-
sian complexity reduction (3M).

CUBLAS_COMPUTE_32I This is the default 32-bit integer mode and uses compute and interme-
diate storage precisions of at least 32-bits.

CUBLAS_COMPUTE_32I_PEDANTICUses 32-bit integer arithmetic for all phases of calculations.

Note: Setting the environment variable NVIDIA_TF32_OVERRIDE = 0 will override any defaults or
programmatic configuration of NVIDIA libraries, and consequently, cuBLAS will not accelerate FP32
computations with TF32 tensor cores.

4.2. cuBLAS Datatypes Reference 23

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp

cuBLAS, Release 12.6

4.3. CUDA Datatypes Reference

The chapter describes types shared by multiple CUDA Libraries and defined in the header file
library_types.h.

4.3.1. cudaDataType_t

The cudaDataType_t type is an enumerant to specify the data precision. It is used when the data
reference does not carry the type itself (e.g void *)

For example, it is used in the routine cublasSgemmEx().

Value Meaning

CUDA_R_16F the data type is a 16-bit real half precision floating-point

CUDA_C_16F the data type is a 32-bit structure comprised of two half precision floating-points
representing a complex number.

CUDA_R_16BF the data type is a 16-bit real bfloat16 floating-point

CUDA_C_16BF the data type is a 32-bit structure comprised of two bfloat16 floating-points rep-
resenting a complex number.

CUDA_R_32F the data type is a 32-bit real single precision floating-point

CUDA_C_32F the data type is a 64-bit structure comprised of two single precisionfloating-points
representing a complex number.

CUDA_R_64F the data type is a 64-bit real double precision floating-point

CUDA_C_64F the data type is a 128-bit structure comprised of two double precision floating-
points representing a complex number.

CUDA_R_8I the data type is a 8-bit real signed integer

CUDA_C_8I the data type is a 16-bit structure comprised of two 8-bit signed integers repre-
senting a complex number.

CUDA_R_8U the data type is a 8-bit real unsigned integer

CUDA_C_8U the data type is a 16-bit structure comprised of two 8-bit unsigned integers rep-
resenting a complex number.

CUDA_R_32I the data type is a 32-bit real signed integer

CUDA_C_32I the data type is a 64-bit structure comprised of two 32-bit signed integers repre-
senting a complex number.

CUDA_R_8F_E4M3the data type is an 8-bit real floating point in E4M3 format

CUDA_R_8F_E5M2the data type is an 8-bit real floating point in E5M2 format

24 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.3.2. libraryPropertyType_t

The libraryPropertyType_t is used as a parameter to specify which property is requested when
using the routine cublasGetProperty()

Value Meaning

MAJOR_VERSION enumerant to query the major version

MINOR_VERSION enumerant to query the minor version

PATCH_LEVEL number to identify the patch level

4.4. cuBLAS Helper Function Reference

4.4.1. cublasCreate()

cublasStatus_t
cublasCreate(cublasHandle_t *handle)

This function initializes the cuBLAS library and creates a handle to an opaque structure holding the
cuBLAS library context. It allocates hardware resources on the host and device and must be called
prior to making any other cuBLAS library calls. The cuBLAS library context is tied to the current CUDA
device. To use the library on multiple devices, one cuBLAS handle needs to be created for each device.
Furthermore, for a given device, multiple cuBLAS handles with different configurations can be created.
Because cublasCreate() allocates some internal resources and the release of those resources by calling
cublasDestroy() will implicitly call cudaDeviceSynchronize(), it is recommended to minimize the
number of times these functions are called. For multi-threaded applications that use the same device
from different threads, the recommended programming model is to create one cuBLAS handle per
thread and use that cuBLAS handle for the entire life of the thread.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded

CUBLAS_STATUS_NOT_INITIALIZED the CUDA™ Runtime initialization failed

CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

CUBLAS_STATUS_INVALID_VALUE handle == NULL

4.4. cuBLAS Helper Function Reference 25

cuBLAS, Release 12.6

4.4.2. cublasDestroy()

cublasStatus_t
cublasDestroy(cublasHandle_t handle)

This function releases hardware resources used by the cuBLAS library. This function is usually the
last call with a particular handle to the cuBLAS library. Because cublasCreate() allocates some internal
resources and the release of those resources by calling cublasDestroy() will implicitly call cudaDe-
viceSynchronize(), it is recommended to minimize the number of times these functions are called.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the shut down succeeded

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

4.4.3. cublasGetVersion()

cublasStatus_t
cublasGetVersion(cublasHandle_t handle, int *version)

This function returns the version number of the cuBLAS library.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUEthe provided storage for library version number is not initialized
(NULL)

Note: This function can be safely called with the handle set to NULL. This allows users to get the
version of the library without a handle. Another way to do this is with cublasGetProperty().

4.4.4. cublasGetProperty()

cublasStatus_t
cublasGetProperty(libraryPropertyType type, int *value)

This function returns the value of the requested property in memory pointed to by value. Refer to
libraryPropertyType for supported types.

26 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_INVALID_VALUE Invalid type value
▶ If invalid type value or
▶ value == NULL

4.4.5. cublasGetStatusName()

const char* cublasGetStatusName(cublasStatus_t status)

This function returns the string representation of a given status.

Return Value Meaning

NULL-terminated string The string representation of the status

4.4.6. cublasGetStatusString()

const char* cublasGetStatusString(cublasStatus_t status)

This function returns the description string for a given status.

Return Value Meaning

NULL-terminated string The description of the status

4.4.7. cublasSetStream()

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

This function sets the cuBLAS library stream, which will be used to execute all subsequent calls to
the cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use the default NULL
stream. In particular, this routine can be used to change the stream between kernel launches and then
to reset the cuBLAS library stream back to NULL. Additionally this function unconditionally resets the
cuBLAS library workspace back to the default workspace pool (see cublasSetWorkspace()).

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

4.4. cuBLAS Helper Function Reference 27

cuBLAS, Release 12.6

4.4.8. cublasSetWorkspace()

cublasStatus_t
cublasSetWorkspace(cublasHandle_t handle, void *workspace, size_t�
↪→workspaceSizeInBytes)

This function sets the cuBLAS library workspace to a user-owned device buffer, which will be used
to execute all subsequent calls to the cuBLAS library functions (on the currently set stream). If the
cuBLAS library workspace is not set, all kernels will use the default workspace pool allocated dur-
ing the cuBLAS context creation. In particular, this routine can be used to change the workspace
between kernel launches. The workspace pointer has to be aligned to at least 256 bytes, other-
wise CUBLAS_STATUS_INVALID_VALUE error is returned. The cublasSetStream() function uncon-
ditionally resets the cuBLAS library workspace back to the default workspace pool. Calling this
function, including with workspaceSizeInBytes equal to 0, will prevent the cuBLAS library from
utilizing the default workspace. Too small workspaceSizeInBytes may cause some routines to
fail with CUBLAS_STATUS_ALLOC_FAILED error returned or cause large regressions in performance.
Workspace size equal to or larger than 16KiB is enough to prevent CUBLAS_STATUS_ALLOC_FAILED
error, while a larger workspace can provide performance benefits for some routines.

Note: If the stream set by cublasSetStream() is cudaStreamPerThread and there are multiple
threads using the same cuBLAS library handle, then users must manually manage synchronization
to avoid possible race conditions in the user provided workspace. Alternatively, users may rely on the
default workspace pool which safely guards against race conditions.

The table below shows the recommended size of user-provided workspace. This is based on the
cuBLAS default workspace pool size which is GPU architecture dependent.

GPU Architecture Recommended workspace size

NVIDIA Hopper Architecture 32 MiB

Other 4 MiB

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the workspace pointer wasn’t aligned to at least 256 bytes

28 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.4.9. cublasGetStream()

cublasStatus_t
cublasGetStream(cublasHandle_t handle, cudaStream_t *streamId)

This function gets the cuBLAS library stream, which is being used to execute all calls to the cuBLAS
library functions. If the cuBLAS library stream is not set, all kernels use the default NULL stream.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was returned successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE streamId == NULL

4.4.10. cublasGetPointerMode()

cublasStatus_t
cublasGetPointerMode(cublasHandle_t handle, cublasPointerMode_t *mode)

This function obtains the pointer mode used by the cuBLAS library. Please see the section on the
cublasPointerMode_t type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the pointer mode was obtained successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE mode == NULL

4.4.11. cublasSetPointerMode()

cublasStatus_t
cublasSetPointerMode(cublasHandle_t handle, cublasPointerMode_t mode)

This function sets the pointer mode used by the cuBLAS library. The default is for the values to be
passed by reference on the host. Please see the section on the cublasPointerMode_t type for more
details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the pointer mode was set successfully

CUBLAS_STATUS_NOT_INITIALIZEDthe library was not initialized

CUBLAS_STATUS_INVALID_VALUEmode is not CUBLAS_POINTER_MODE_HOST or
CUBLAS_POINTER_MODE_DEVICE

4.4. cuBLAS Helper Function Reference 29

cuBLAS, Release 12.6

4.4.12. cublasSetVector()

cublasStatus_t
cublasSetVector(int n, int elemSize,

const void *x, int incx, void *y, int incy)

This function supports the 64-bit Integer Interface.

This function copies n elements from a vector x in host memory space to a vector y in GPU memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elements is given by incx for the source vector x and by incy for the destination
vector y.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of that matrix. Similarly, using an increment
equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.13. cublasGetVector()

cublasStatus_t
cublasGetVector(int n, int elemSize,

const void *x, int incx, void *y, int incy)

This function supports the 64-bit Integer Interface.

This function copies n elements from a vector x in GPU memory space to a vector y in host memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elements is given by incx for the source vector and incy for the destination
vector y.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of that matrix. Similarly, using an increment
equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

30 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.4.14. cublasSetMatrix()

cublasStatus_t
cublasSetMatrix(int rows, int cols, int elemSize,

const void *A, int lda, void *B, int ldb)

This function supports the 64-bit Integer Interface.

This function copies a tile of rows x cols elements from a matrix A in host memory space to a
matrix B in GPU memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in lda and ldb, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize, lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.15. cublasGetMatrix()

cublasStatus_t
cublasGetMatrix(int rows, int cols, int elemSize,

const void *A, int lda, void *B, int ldb)

This function supports the 64-bit Integer Interface.

This function copies a tile of rows x cols elements from a matrix A in GPU memory space to a
matrix B in host memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in lda and ldb, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize, lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4. cuBLAS Helper Function Reference 31

cuBLAS, Release 12.6

4.4.16. cublasSetVectorAsync()

cublasStatus_t
cublasSetVectorAsync(int n, int elemSize, const void *hostPtr, int incx,

void *devicePtr, int incy, cudaStream_t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasSetVector(), with the exception that the data transfer
is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.17. cublasGetVectorAsync()

cublasStatus_t
cublasGetVectorAsync(int n, int elemSize, const void *devicePtr, int incx,

void *hostPtr, int incy, cudaStream_t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasGetVector(), with the exception that the data trans-
fer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.18. cublasSetMatrixAsync()

cublasStatus_t
cublasSetMatrixAsync(int rows, int cols, int elemSize, const void *A,

int lda, void *B, int ldb, cudaStream_t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasSetMatrix(), with the exception that the data transfer
is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

32 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize, lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.19. cublasGetMatrixAsync()

cublasStatus_t
cublasGetMatrixAsync(int rows, int cols, int elemSize, const void *A,

int lda, void *B, int ldb, cudaStream_t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasGetMatrix(), with the exception that the data trans-
fer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize, lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

4.4.20. cublasSetAtomicsMode()

cublasStatus_t cublasSetAtomicsMode(cublasHandlet handle, cublasAtomicsMode_t mode)

Some routines like cublas<t>symv and cublas<t>hemv have an alternate implementation that use
atomics to cumulate results. This implementation is generally significantly faster but can generate
results that are not strictly identical from one run to the others. Mathematically, those different re-
sults are not significant but when debugging those differences can be prejudicial.

This function allows or disallows the usage of atomics in the cuBLAS library for all routines which
have an alternate implementation. When not explicitly specified in the documentation of any cuBLAS
routine, it means that this routine does not have an alternate implementation that use atomics. When
atomics mode is disabled, each cuBLAS routine should produce the same results from one run to the
other when called with identical parameters on the same Hardware.

The default atomics mode of default initialized cublasHandle_t object is
CUBLAS_ATOMICS_NOT_ALLOWED. Please see the section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the atomics mode was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

4.4. cuBLAS Helper Function Reference 33

cuBLAS, Release 12.6

4.4.21. cublasGetAtomicsMode()

cublasStatus_t cublasGetAtomicsMode(cublasHandle_t handle, cublasAtomicsMode_t *mode)

This function queries the atomic mode of a specific cuBLAS context.

The default atomics mode of default initialized cublasHandle_t object is
CUBLAS_ATOMICS_NOT_ALLOWED. Please see the section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the atomics mode was queried successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the argument mode is a NULL pointer

4.4.22. cublasSetMathMode()

cublasStatus_t cublasSetMathMode(cublasHandle_t handle, cublasMath_t mode)

The cublasSetMathMode() function enables you to choose the compute precision modes as defined by
cublasMath_t. Users are allowed to set the compute precision mode as a logical combination of them
(except the deprecated CUBLAS_TENSOR_OP_MATH). For example, cublasSetMathMode(handle,
CUBLAS_DEFAULT_MATH | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION). Please
note that the default math mode is CUBLAS_DEFAULT_MATH.

For matrix and compute precisions allowed for cublasGemmEx() and cublasLtMatmul() APIs and their
strided variants please refer to: cublasGemmEx() , cublasGemmBatchedEx(), cublasGemmStrided-
BatchedEx(), and cublasLtMatmul().

Return Value Meaning

CUBLAS_STATUS_SUCCESS the math mode was set successfully.

CUBLAS_STATUS_INVALID_VALUE an invalid value for mode was specified.

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized.

4.4.23. cublasGetMathMode()

cublasStatus_t cublasGetMathMode(cublasHandle_t handle, cublasMath_t *mode)

This function returns the math mode used by the library routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the math type was returned successfully.

CUBLAS_STATUS_INVALID_VALUE if mode is NULL.

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized.

34 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.4.24. cublasSetSmCountTarget()

cublasStatus_t cublasSetSmCountTarget(cublasHandle_t handle, int smCountTarget)

The cublasSetSmCountTarget() function allows overriding the number of multiprocessors available to
the library during kernels execution.

This option can be used to improve the library performance when cuBLAS routines are known to run
concurrently with other work on different CUDA streams. E.g. a NVIDIA A100 GPU has 108 SM and
there is a concurrent kenrel running with grid size of 8, one can use cublasSetSmCountTarget() with
value 100 to override the library heuristics to optimize for running on 100 multiprocessors.

When set to 0 the library returns to its default behavior. The input value should not exceed the device’s
multiprocessor count, which can be obtained using cudaDeviceGetAttribute. Negative values are
not accepted.

The usermust ensure thread safetywhenmodifying the library handlewith this routine similar towhen
using cublasSetStream(), etc.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was set successfully.

CUBLAS_STATUS_INVALID_VALUE the value of smCountTarget outside of the allowed range.

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized.

4.4.25. cublasGetSmCountTarget()

cublasStatus_t cublasGetSmCountTarget(cublasHandle_t handle, int *smCountTarget)

This function obtains the value previously programmed to the library handle.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was set successfully.

CUBLAS_STATUS_INVALID_VALUE smCountTarget is NULL.

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized.

4.4.26. cublasLoggerConfigure()

cublasStatus_t cublasLoggerConfigure(
int logIsOn,
int logToStdOut,
int logToStdErr,
const char* logFileName)

This function configures logging during runtime. Besides this type of configuration, it is possible to
configure logging with special environment variables which will be checked by libcublas:

4.4. cuBLAS Helper Function Reference 35

cuBLAS, Release 12.6

▶ CUBLAS_LOGINFO_DBG - Setup env. variable to “1” means turn on logging (by default logging is
off).

▶ CUBLAS_LOGDEST_DBG - Setup env. variable encodes how to log. “stdout”, “stderr” means to
output log messages to stdout or stderr, respectively. In the other case, its specifies “filename”
of file.

Parameters

logIsOn
Input. Turn on/off logging completely. By default is off, but is turned on by calling cublasSetLog-
gerCallback() to user defined callback function.

logToStdOut
Input. Turn on/off logging to standard output I/O stream. By default is off.

logToStdErr
Input. Turn on/off logging to standard error I/O stream. By default is off.

logFileName
Input. Turn on/off logging to file in filesystem specified by it’s name. cublasLoggerConfigure()
copies the content of logFileName. You should provide null pointer if you are not interested in
this type of logging.

Returns

CUBLAS_STATUS_SUCCESS
Success.

4.4.27. cublasGetLoggerCallback()

cublasStatus_t cublasGetLoggerCallback(
cublasLogCallback* userCallback)

This function retrieves function pointer to previously installed custom user defined callback function
via cublasSetLoggerCallback() or zero otherwise.

Parameters

userCallback
Output. Pointer to user defined callback function.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE userCallback is NULL

36 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.4.28. cublasSetLoggerCallback()

cublasStatus_t cublasSetLoggerCallback(
cublasLogCallback userCallback)

This function installs a custom user defined callback function via cublas C public API.

Parameters

userCallback
Input. Pointer to user defined callback function.

Returns

CUBLAS_STATUS_SUCCESS
Success.

4.5. cuBLAS Level-1 Function Reference

In this chapter we describe the Level-1 Basic Linear Algebra Subprograms (BLAS1) functions that per-
form scalar and vector based operations. We will use abbreviations <type> for type and <t> for the
corresponding short type to make a more concise and clear presentation of the implemented func-
tions. Unless otherwise specified <type> and <t> have the following meanings:

<type> <t> Meaning

float ‘s’ or ‘S’ real single-precision

double ‘d’ or ‘D’ real double-precision

cuComplex ‘c’ or ‘C’ complex single-precision

cuDoubleComplex ‘z’ or ‘Z’ complex double-precision

When the parameters and returned values of the function differ, which sometimes happens for com-
plex input, the <t> can also have the following meanings Sc, Cs, Dz and Zd.

The abbreviation Re(·) and Im(·) will stand for the real and imaginary part of a number, respectively.
Since imaginary part of a real number does not exist, wewill consider it to be zero and can usually simply
discard it from the equation where it is being used. Also, the ᾱ will denote the complex conjugate of α
.

In general throughout the documentation, the lower case Greek symbols α and β will denote scalars,
lower case English letters in bold type x and y will denote vectors and capital English letters A , B and
C will denote matrices.

4.5. cuBLAS Level-1 Function Reference 37

cuBLAS, Release 12.6

4.5.1. cublasI<t>amax()

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n,
const float *x, int incx, int *result)

cublasStatus_t cublasIdamax(cublasHandle_t handle, int n,
const double *x, int incx, int *result)

cublasStatus_t cublasIcamax(cublasHandle_t handle, int n,
const cuComplex *x, int incx, int *result)

cublasStatus_t cublasIzamax(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, int *result)

This function supports the 64-bit Integer Interface.

This function finds the (smallest) index of the element of the maximum magnitude. Hence, the result
is the first i such that |Im (x[j])|+|Re (x[j])| is maximum for i = 1, . . . , n and j = 1+(i− 1)∗ incx . Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE result is NULL

For references please refer to:

isamax, idamax, icamax, izamax

38 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f

cuBLAS, Release 12.6

4.5.2. cublasI<t>amin()

cublasStatus_t cublasIsamin(cublasHandle_t handle, int n,
const float *x, int incx, int *result)

cublasStatus_t cublasIdamin(cublasHandle_t handle, int n,
const double *x, int incx, int *result)

cublasStatus_t cublasIcamin(cublasHandle_t handle, int n,
const cuComplex *x, int incx, int *result)

cublasStatus_t cublasIzamin(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, int *result)

This function supports the 64-bit Integer Interface.

This function finds the (smallest) index of the element of the minimum magnitude. Hence, the result
is the first i such that |Im (x[j])|+|Re (x[j])| is minimum for i = 1, . . . , n and j = 1 + (i− 1) ∗ incx Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE result is NULL

For references please refer to:

isamin

4.5. cuBLAS Level-1 Function Reference 39

http://www.netlib.org/scilib/blass.f

cuBLAS, Release 12.6

4.5.3. cublas<t>asum()

cublasStatus_t cublasSasum(cublasHandle_t handle, int n,
const float *x, int incx, float *result)

cublasStatus_t cublasDasum(cublasHandle_t handle, int n,
const double *x, int incx, double *result)

cublasStatus_t cublasScasum(cublasHandle_t handle, int n,
const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDzasum(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the 64-bit Integer Interface.

This function computes the sum of the absolute values of the elements of vector x. Hence, the result
is

∑n
i=1|Im (x[j])|+|Re (x[j])|where j = 1+(i− 1)∗ incx . Notice that the last equation reflects 1-based

indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0.0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE result is NULL

For references please refer to:

sasum, dasum, scasum, dzasum

40 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f

cuBLAS, Release 12.6

4.5.4. cublas<t>axpy()

cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,
const float *alpha,
const float *x, int incx,
float *y, int incy)

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
const double *alpha,
const double *x, int incx,
double *y, int incy)

cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,
const cuComplex *alpha,
const cuComplex *x, int incx,
cuComplex *y, int incy)

cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function multiplies the vector x by the scalar α and adds it to the vector y overwriting the latest
vector with the result. Hence, the performed operation is y[j] = α × x[k] + y[j] for i = 1, . . . , n , k =
1+ (i− 1) ∗ incx and j = 1+ (i− 1) ∗ incy . Notice that the last two equations reflect 1-based indexing
used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

alpha host or device input <type> scalar used for multiplication.

n input number of elements in the vector x and y.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

saxpy, daxpy, caxpy, zaxpy

4.5. cuBLAS Level-1 Function Reference 41

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

cuBLAS, Release 12.6

4.5.5. cublas<t>copy()

cublasStatus_t cublasScopy(cublasHandle_t handle, int n,
const float *x, int incx,
float *y, int incy)

cublasStatus_t cublasDcopy(cublasHandle_t handle, int n,
const double *x, int incx,
double *y, int incy)

cublasStatus_t cublasCcopy(cublasHandle_t handle, int n,
const cuComplex *x, int incx,
cuComplex *y, int incy)

cublasStatus_t cublasZcopy(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function copies the vector x into the vector y. Hence, the performed operation is y[j] = x[k] for
i = 1, . . . , n , k = 1 + (i− 1) ∗ incx and j = 1 + (i− 1) ∗ incy . Notice that the last two equations reflect
1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x and y.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device output <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

scopy, dcopy, ccopy, zcopy

42 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

cuBLAS, Release 12.6

4.5.6. cublas<t>dot()

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,
const float *x, int incx,
const float *y, int incy,
float *result)

cublasStatus_t cublasDdot (cublasHandle_t handle, int n,
const double *x, int incx,
const double *y, int incy,
double *result)

cublasStatus_t cublasCdotu(cublasHandle_t handle, int n,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *result)

cublasStatus_t cublasCdotc(cublasHandle_t handle, int n,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *result)

cublasStatus_t cublasZdotu(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)

cublasStatus_t cublasZdotc(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)

This function supports the 64-bit Integer Interface.

This function computes the dot product of vectors x and y. Hence, the result is
∑n

i=1 (x[k]× y[j])where
k = 1 + (i− 1) ∗ incx and j = 1 + (i− 1) ∗ incy . Notice that in the first equation the conjugate of the
element of vector x should be used if the function name ends in character ‘c’ and that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

result host or device output the resulting dot product, which is 0.0 if n<=0.

The possible error values returned by this function and their meanings are listed below.

4.5. cuBLAS Level-1 Function Reference 43

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sdot, ddot, cdotu, cdotc, zdotu, zdotc

4.5.7. cublas<t>nrm2()

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,
const float *x, int incx, float *result)

cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
const double *x, int incx, double *result)

cublasStatus_t cublasScnrm2(cublasHandle_t handle, int n,
const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDznrm2(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the 64-bit Integer Interface.

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent to√∑n

i=1 (x[j]× x[j]) where j = 1 + (i− 1) ∗ incx in exact arithmetic. Notice that the last equation re-
flects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

result host or device output the resulting norm, which is 0.0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE result is NULL

44 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

cuBLAS, Release 12.6

For references please refer to:

snrm2, dnrm2, scnrm2, dznrm2

4.5.8. cublas<t>rot()

cublasStatus_t cublasSrot(cublasHandle_t handle, int n,
float *x, int incx,
float *y, int incy,
const float *c, const float *s)

cublasStatus_t cublasDrot(cublasHandle_t handle, int n,
double *x, int incx,
double *y, int incy,
const double *c, const double *s)

cublasStatus_t cublasCrot(cublasHandle_t handle, int n,
cuComplex *x, int incx,
cuComplex *y, int incy,
const float *c, const cuComplex *s)

cublasStatus_t cublasCsrot(cublasHandle_t handle, int n,
cuComplex *x, int incx,
cuComplex *y, int incy,
const float *c, const float *s)

cublasStatus_t cublasZrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const cuDoubleComplex *s)

cublasStatus_t cublasZdrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const double *s)

This function supports the 64-bit Integer Interface.

This function applies Givens rotation matrix (i.e., rotation in the x,y plane counter-clockwise by angle
defined by cos(alpha)=c, sin(alpha)=s):

G =

 c s

−s c

to vectors x and y.

Hence, the result is x[k] = c×x[k]+ s×y[j] and y[j] = −s×x[k]+ c×y[j]where k = 1+(i− 1) ∗ incx and
j = 1+(i− 1)∗ incy . Notice that the last two equations reflect 1-based indexing used for compatibility
with Fortran.

4.5. cuBLAS Level-1 Function Reference 45

http://www.netlib.org/blas/snrm2.f90
http://www.netlib.org/blas/dnrm2.f90
http://www.netlib.org/blas/scnrm2.f90
http://www.netlib.org/blas/dznrm2.f90

cuBLAS, Release 12.6

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

c host or device input cosine element of the rotation matrix.

s host or device input sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srot, drot, crot, csrot, zrot, zdrot

4.5.9. cublas<t>rotg()

cublasStatus_t cublasSrotg(cublasHandle_t handle,
float *a, float *b,
float *c, float *s)

cublasStatus_t cublasDrotg(cublasHandle_t handle,
double *a, double *b,
double *c, double *s)

cublasStatus_t cublasCrotg(cublasHandle_t handle,
cuComplex *a, cuComplex *b,
float *c, cuComplex *s)

cublasStatus_t cublasZrotg(cublasHandle_t handle,
cuDoubleComplex *a, cuDoubleComplex *b,
double *c, cuDoubleComplex *s)

This function supports the 64-bit Integer Interface.

This function constructs the Givens rotation matrix

G =

 c s

−s c

that zeros out the second entry of a 2× 1 vector (a, b)T .

Then, for real numbers we can write

46 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

cuBLAS, Release 12.6

 c s

−s c

a

b

 =

r

0

where c2 + s2 = 1 and r = a2 + b2 . The parameters a and b are overwritten with r and z , respectively.
The value of z is such that c and smay be recovered using the following rules:

(c, s) =

(√

1− z2, z
)

if |z|< 1

(0.0, 1.0) if |z|= 1(
1/z,

√
1− z2

)
if |z|> 1

For complex numbers we can write c s

−s̄ c

a

b

 =

r

0

where c2+(s̄× s) = 1 and r = a

|a|× ∥ (a, b)
T ∥2 with ∥ (a, b)

T ∥2=
√
|a|2+|b|2 for a ̸= 0 and r = b for a = 0

. Finally, the parameter a is overwritten with r on exit.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

a host or device in/out <type> scalar that is overwritten with r .

b host or device in/out <type> scalar that is overwritten with z .

c host or device output cosine element of the rotation matrix.

s host or device output sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srotg, drotg, crotg, zrotg

4.5.10. cublas<t>rotm()

cublasStatus_t cublasSrotm(cublasHandle_t handle, int n, float *x, int incx,
float *y, int incy, const float* param)

cublasStatus_t cublasDrotm(cublasHandle_t handle, int n, double *x, int incx,
double *y, int incy, const double* param)

This function supports the 64-bit Integer Interface.

This function applies the modified Givens transformation

4.5. cuBLAS Level-1 Function Reference 47

http://www.netlib.org/blas/srotg.f90
http://www.netlib.org/blas/drotg.f90
http://www.netlib.org/blas/crotg.f90
http://www.netlib.org/blas/zrotg.f90

cuBLAS, Release 12.6

H =

h11 h12

h21 h22

to vectors x and y.

Hence, the result is x[k] = h11 × x[k] + h12 × y[j] and y[j] = h21 × x[k] + h22 × y[j] where k = 1+ (i− 1) ∗
incx and j = 1 + (i− 1) ∗ incy . Notice that the last two equations reflect 1-based indexing used for
compatibility with Fortran.

The elements , , and ofmatrixH are stored in param[1], param[2], param[3] and param[4], respec-
tively. The flag=param[0] defines the following predefined values for the matrix H entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0h11 h12

h21 h22

 1.0 h12

h21 1.0

 h11 1.0

−1.0 h22

 1.0 0.0

0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

n in-
put

number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

param host or
device

in-
put

<type> vector of 5 elements, where param[0] and param[1-4] contain
the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srotm, drotm

48 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f

cuBLAS, Release 12.6

4.5.11. cublas<t>rotmg()

cublasStatus_t cublasSrotmg(cublasHandle_t handle, float *d1, float *d2,
float *x1, const float *y1, float *param)

cublasStatus_t cublasDrotmg(cublasHandle_t handle, double *d1, double *d2,
double *x1, const double *y1, double *param)

This function supports the 64-bit Integer Interface.

This function constructs the modified Givens transformation

H =

h11 h12

h21 h22

that zeros out the second entry of a 2× 1 vector

(√
d1 ∗ x1,

√
d2 ∗ y1

)T

.

The flag=param[0] defines the following predefined values for the matrix H entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0h11 h12

h21 h22

 1.0 h12

h21 1.0

 h11 1.0

−1.0 h22

 1.0 0.0

0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

d1 host or
device

in/out <type> scalar that is overwritten on exit.

d2 host or
device

in/out <type> scalar that is overwritten on exit.

x1 host or
device

in/out <type> scalar that is overwritten on exit.

y1 host or
device

in-
put

<type> scalar.

param host or
device

out-
put

<type> vector of 5 elements, where param[0] and param[1-4] contain
the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.5. cuBLAS Level-1 Function Reference 49

cuBLAS, Release 12.6

For references please refer to:

srotmg, drotmg

4.5.12. cublas<t>scal()

cublasStatus_t cublasSscal(cublasHandle_t handle, int n,
const float *alpha,
float *x, int incx)

cublasStatus_t cublasDscal(cublasHandle_t handle, int n,
const double *alpha,
double *x, int incx)

cublasStatus_t cublasCscal(cublasHandle_t handle, int n,
const cuComplex *alpha,
cuComplex *x, int incx)

cublasStatus_t cublasCsscal(cublasHandle_t handle, int n,
const float *alpha,
cuComplex *x, int incx)

cublasStatus_t cublasZscal(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
cuDoubleComplex *x, int incx)

cublasStatus_t cublasZdscal(cublasHandle_t handle, int n,
const double *alpha,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function scales the vector x by the scalarα and overwrites it with the result. Hence, the performed
operation is x[j] = α× x[j] for i = 1, . . . , n and j = 1+ (i− 1) ∗ incx . Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

alpha host or device input <type> scalar used for multiplication.

n input number of elements in the vector x.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Table 1: :class: table-no-stripes

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sscal, dscal, csscal, cscal, zdscal, zscal

50 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f
http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

cuBLAS, Release 12.6

4.5.13. cublas<t>swap()

cublasStatus_t cublasSswap(cublasHandle_t handle, int n, float *x,
int incx, float *y, int incy)

cublasStatus_t cublasDswap(cublasHandle_t handle, int n, double *x,
int incx, double *y, int incy)

cublasStatus_t cublasCswap(cublasHandle_t handle, int n, cuComplex *x,
int incx, cuComplex *y, int incy)

cublasStatus_t cublasZswap(cublasHandle_t handle, int n, cuDoubleComplex *x,
int incx, cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function interchanges the elements of vector x and y. Hence, the performed operation is
y[j] ⇔ x[k] for i = 1, . . . , n , k = 1 + (i− 1) ∗ incx and j = 1 + (i− 1) ∗ incy . Notice that the last
two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x and y.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sswap, dswap, cswap, zswap

4.6. cuBLAS Level-2 Function Reference

In this chapter we describe the Level-2 Basic Linear Algebra Subprograms (BLAS2) functions that per-
form matrix-vector operations.

4.6. cuBLAS Level-2 Function Reference 51

http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

cuBLAS, Release 12.6

4.6.1. cublas<t>gbmv()

cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int kl, int ku,
const float *alpha,
const float *A, int lda,
const float *x, int incx,
const float *beta,
float *y, int incy)

cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int kl, int ku,
const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta,
double *y, int incy)

cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int kl, int ku,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int kl, int ku,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the banded matrix-vector multiplication

y = α op(A)x+ βy

whereA is a bandedmatrix with kl subdiagonals and ku superdiagonals, x and y are vectors, and α and
β are scalars. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N
AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

The banded matrix A is stored column by column, with the main diagonal stored in row ku+1 (starting
in first position), the first superdiagonal stored in row ku (starting in second position), the first sub-
diagonal stored in row ku + 2 (starting in first position), etc. So that in general, the element A (i, j) is
stored in thememory location A(ku+1+i-j,j) for j = 1, . . . , n and i ∈ [max (1, j − ku) ,min (m, j + kl)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left ku× ku and bottom right kl × kl triangles) are not referenced.

52 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix A.

n in-
put

number of columns of matrix A.

kl in-
put

number of subdiagonals of matrix A.

ku in-
put

number of superdiagonals of matrix A.

alpha host or de-
vice

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x n with lda>=kl+ku+1.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in-
put

<type> vector with n elements if transa == CUBLAS_OP_N and m ele-
ments otherwise.

incx in-
put

stride between consecutive elements of x.

beta host or de-
vice

in-
put

<type> scalar used for multiplication, if beta == 0 then y does not
have to be a valid input.

y device in/out <type> vector with m elements if transa == CUBLAS_OP_N and n ele-
ments otherwise.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 53

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n, kl, ku < 0 or
▶ if lda < (kl+ku+1) or
▶ if incx, incy == 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_T,

CUBLAS_OP_C or
▶ alpha, beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgbmv, dgbmv, cgbmv, zgbmv

4.6.2. cublas<t>gemv()

cublasStatus_t cublasSgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const float *alpha,
const float *A, int lda,
const float *x, int incx,
const float *beta,
float *y, int incy)

cublasStatus_t cublasDgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta,
double *y, int incy)

cublasStatus_t cublasCgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication

54 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

cuBLAS, Release 12.6

y = α op(A)x+ βy

where A is am× nmatrix stored in column-major format, x and y are vectors, and α and β are scalars.
Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N
AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix A.

n in-
put

number of columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x n with lda >= max(1,m). Before
entry, the leading m by n part of the array A must contain the matrix of
coefficients. Unchanged on exit.

lda in-
put

leading dimension of two-dimensional array used to store matrix A. lda
must be at least max(1,m).

x device in-
put

<type> vector at least (1+(n-1)*abs(incx)) elements if
transa==CUBLAS_OP_N and at least (1+(m-1)*abs(incx)) ele-
ments otherwise.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in/out <type> vector at least (1+(m-1)*abs(incy)) elements if
transa==CUBLAS_OP_N and at least (1+(n-1)*abs(incy)) ele-
ments otherwise.

incy in-
put

stride between consecutive elements of y

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or incx,incy=0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.6. cuBLAS Level-2 Function Reference 55

cuBLAS, Release 12.6

For references please refer to:

sgemv, dgemv, cgemv, zgemv

4.6.3. cublas<t>ger()

cublasStatus_t cublasSger(cublasHandle_t handle, int m, int n,
const float *alpha,
const float *x, int incx,
const float *y, int incy,
float *A, int lda)

cublasStatus_t cublasDger(cublasHandle_t handle, int m, int n,
const double *alpha,
const double *x, int incx,
const double *y, int incy,
double *A, int lda)

cublasStatus_t cublasCgeru(cublasHandle_t handle, int m, int n,
const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasCgerc(cublasHandle_t handle, int m, int n,
const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasZgeru(cublasHandle_t handle, int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int lda)

cublasStatus_t cublasZgerc(cublasHandle_t handle, int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int lda)

This function supports the 64-bit Integer Interface.

This function performs the rank-1 update

A =

{
αxyT +A if ger(),geru() is called
αxyH +A if gerc() is called

where A is am× nmatrix stored in column-major format, x and y are vectors, and α is a scalar.

56 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f

cuBLAS, Release 12.6

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

m input number of rows of matrix A.

n input number of columns of matrix A.

alpha host or de-
vice

input <type> scalar used for multiplication.

x device input <type> vector with m elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

A device in/out <type> array of dimension lda x n with lda >= max(1,m).

lda input leading dimension of two-dimensional array used to store matrix
A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0
▶ if incx = 0 or incy = 0 or
▶ if alpha == NULL or
▶ lda < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sger, dger, cgeru, cgerc, zgeru, zgerc

4.6.4. cublas<t>sbmv()

cublasStatus_t cublasSsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const float *alpha,
const float *A, int lda,
const float *x, int incx,
const float *beta, float *y, int incy)

cublasStatus_t cublasDsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta, double *y, int incy)

4.6. cuBLAS Level-2 Function Reference 57

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

cuBLAS, Release 12.6

This function supports the 64-bit Integer Interface.

This function performs the symmetric banded matrix-vector multiplication

y = αAx+ βy

where A is a n × n symmetric banded matrix with k subdiagonals and superdiagonals, x and y are
vectors, and α and β are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the symmetric banded matrix A is stored column by
column, with themain diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) for j = 1, . . . , n and i ∈ [j,min(m, j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k × k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the symmetric banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) for j = 1, . . . , n and
i ∈ [max(1, j − k), j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k × k triangle) are not referenced.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

k in-
put

number of sub- and super-diagonals of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x n with lda >= k+1.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

58 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if alpha == NULL or beta == NULL or
▶ lda < (1 + k)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssbmv, dsbmv

4.6.5. cublas<t>spmv()

cublasStatus_t cublasSspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha, const float *AP,
const float *x, int incx, const float *beta,
float *y, int incy)

cublasStatus_t cublasDspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha, const double *AP,
const double *x, int incx, const double *beta,
double *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the symmetric packed matrix-vector multiplication

y = αAx+ βy

where A is a n × n symmetric matrix stored in packed format, x and y are vectors, and α and β are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

4.6. cuBLAS Level-2 Function Reference 59

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A .

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

AP device in-
put

<type> array with A stored in packed format.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in-
put

<type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sspmv, dspmv

60 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

cuBLAS, Release 12.6

4.6.6. cublas<t>spr()

cublasStatus_t cublasSspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *AP)

cublasStatus_t cublasDspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx, double *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed symmetric rank-1 update

A = αxxT +A

where A is a n× n symmetric matrix stored in packed format, x is a vector, and α is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A .

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

AP device in/out <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 61

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sspr, dspr

4.6.7. cublas<t>spr2()

cublasStatus_t cublasSspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx,
const float *y, int incy, float *AP)

cublasStatus_t cublasDspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx,
const double *y, int incy, double *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed symmetric rank-2 update

A = α
(
xyT + yxT

)
+A

where A is a n× n symmetric matrix stored in packed format, x is a vector, and α is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

62 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A .

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

y device in-
put

<type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

AP device in/out <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sspr2, dspr2

4.6. cuBLAS Level-2 Function Reference 63

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

cuBLAS, Release 12.6

4.6.8. cublas<t>symv()

cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *A, int lda,
const float *x, int incx, const float �

↪→*beta,
float *y, int incy)

cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *A, int lda,
const double *x, int incx, const double �

↪→*beta,
double *y, int incy)

cublasStatus_t cublasCsymv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha, ∕* host or device�

↪→pointer *∕
const cuComplex *A, int lda,
const cuComplex *x, int incx, const cuComplex �

↪→*beta,
cuComplex *y, int incy)

cublasStatus_t cublasZsymv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx, const cuDoubleComplex�

↪→*beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the symmetric matrix-vector multiplication.

y = αAx+ βy where A is a n× n symmetric matrix stored in lower or upper mode, x and y are vectors,
and α and β are scalars.

This function has an alternate faster implementation using atomics that can be enabled with cublas-
SetAtomicsMode().

Please see the section on the function cublasSetAtomicsMode() for more details about the usage of
atomics.

64 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates ifmatrix lower or upper part is stored, the other symmetric part
is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x n with lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ lda < n

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymv, dsymv

4.6. cuBLAS Level-2 Function Reference 65

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

cuBLAS, Release 12.6

4.6.9. cublas<t>syr()

cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *A, int�

↪→lda)
cublasStatus_t cublasDsyr(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const double *alpha,
const double *x, int incx, double *A, int�

↪→lda)
cublasStatus_t cublasCsyr(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx, cuComplex *A, int�

↪→lda)
cublasStatus_t cublasZsyr(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx, cuDoubleComplex *A, int�

↪→lda)

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank-1 update

A = αxxT +A

where A is a n× n symmetric matrix stored in column-major format, x is a vector, and α is a scalar.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

The possible error values returned by this function and their meanings are listed below.

66 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if lda < max(1, n) or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr, dsyr

4.6.10. cublas<t>syr2()

cublasStatus_t cublasSsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
const float *alpha, const float *x,�

↪→int incx,
const float *y, int incy, float *A,�

↪→int lda
cublasStatus_t cublasDsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const double *alpha, const double *x,�
↪→int incx,

const double *y, int incy, double *A,�
↪→int lda
cublasStatus_t cublasCsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const cuComplex *alpha, const cuComplex *x,�
↪→int incx,

const cuComplex *y, int incy, cuComplex *A,�
↪→int lda
cublasStatus_t cublasZsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const cuDoubleComplex *alpha, const cuDoubleComplex *x,�
↪→int incx,

const cuDoubleComplex *y, int incy, cuDoubleComplex *A,�
↪→int lda

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank-2 update

A = α
(
xyT + yxT

)
+A

where A is a n × n symmetric matrix stored in column-major format, x and y are vectors, and α is a
scalar.

4.6. cuBLAS Level-2 Function Reference 67

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

y device in-
put

<type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if alpha == NULL or
▶ lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2, dsyr2

68 Chapter 4. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f_source.html
http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f_source.html

cuBLAS, Release 12.6

4.6.11. cublas<t>tbmv()

cublasStatus_t cublasStbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int lda,
double *x, int incx)

cublasStatus_t cublasCtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function performs the triangular banded matrix-vector multiplication

x = op(A)x

where A is a triangular banded matrix, and x is a vector. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with themain diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) for j = 1, . . . , n and i ∈ [j,min(m, j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k × k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) for j = 1, . . . , n and
i ∈ [max(1, j − k, j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k × k triangle) are not referenced.

4.6. cuBLAS Level-2 Function Reference 69

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

n in-
put

number of rows and columns of matrix A.

k in-
put

number of sub- and super-diagonals of matrix .

A device in-
put

<type> array of dimension lda x n, with lda>=k+1.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if incx = 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT or
▶ lda < (1 + k)

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stbmv, dtbmv, ctbmv, ztbmv

70 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

cuBLAS, Release 12.6

4.6.12. cublas<t>tbsv()

cublasStatus_t cublasStbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int lda,
double *x, int incx)

cublasStatus_t cublasCtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function solves the triangular banded linear system with a single right-hand-side

op(A)x = b

where A is a triangular banded matrix, and x and b are vectors. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with themain diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) for j = 1, . . . , n and i ∈ [j,min(m, j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k × k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) for j = 1, . . . , n and
i ∈ [max(1, j − k, j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k × k triangle) are not referenced.

4.6. cuBLAS Level-2 Function Reference 71

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

n in-
put

number of rows and columns of matrix A.

k in-
put

number of sub- and super-diagonals of matrix A.

A device in-
put

<type> array of dimension lda x n, with lda >= k+1.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if incx = 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT or
▶ lda < (1 + k)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stbsv, dtbsv, ctbsv, ztbsv

72 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

cuBLAS, Release 12.6

4.6.13. cublas<t>tpmv()

cublasStatus_t cublasStpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function performs the triangular packed matrix-vector multiplication

x = op(A)x

where A is a triangular matrix stored in packed format, and x is a vector. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))∕2] for A(i, j) and i ≤ j . Consequently, the packed format
requires only n(n+1)

2 elements for storage.

4.6. cuBLAS Level-2 Function Reference 73

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

n in-
put

number of rows and columns of matrix A.

AP device in-
put

<type> array with A stored in packed format.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if trans != CUBLAS_OP_N,

CUBLAS_OP_T, CUBLAS_OP_C or
▶ diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpmv, dtpmv, ctpmv, ztpmv

74 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

cuBLAS, Release 12.6

4.6.14. cublas<t>tpsv()

cublasStatus_t cublasStpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function solves the packed triangular linear system with a single right-hand-side

op(A)x = b

where A is a triangular matrix stored in packed format, and x and b are vectors. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the packed
format requires only n(n+1)

2 elements for storage.

4.6. cuBLAS Level-2 Function Reference 75

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on themain diagonal ofmatrix are unity and should
not be accessed.

n in-
put

number of rows and columns of matrix A.

AP device in-
put

<type> array with A stored in packed format.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpsv, dtpsv, ctpsv, ztpsv

76 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

cuBLAS, Release 12.6

4.6.15. cublas<t>trmv()

cublasStatus_t cublasStrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int lda,
double *x, int incx)

cublasStatus_t cublasCtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function performs the triangular matrix-vector multiplication

x = op(A)x

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x
is a vector. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

4.6. cuBLAS Level-2 Function Reference 77

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) (that is, non- or conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

n in-
put

number of rows and columns of matrix A.

A device in-
put

<type> array of dimensions lda x n , with lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT or
▶ lda < max(1, n)

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmv, dtrmv, ctrmv, ztrmv

78 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

cuBLAS, Release 12.6

4.6.16. cublas<t>trsv()

cublasStatus_t cublasStrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int lda,
double *x, int incx)

cublasStatus_t cublasCtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function solves the triangular linear system with a single right-hand-side

op(A)x = b

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x
and b are vectors. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

4.6. cuBLAS Level-2 Function Reference 79

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not ref-
erenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

n in-
put

number of rows and columns of matrix A.

A device in-
put

<type> array of dimension lda x n, with lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in/out <type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if diag != CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT or
▶ lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsv, dtrsv, ctrsv, ztrsv

80 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

cuBLAS, Release 12.6

4.6.17. cublas<t>hemv()

cublasStatus_t cublasChemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian matrix-vector multiplication

y = αAx+ βy

where A is a n × n Hermitian matrix stored in lower or upper mode, x and y are vectors, and α and β
are scalars.

This function has an alternate faster implementation using atomics that can be enabled with

Please see the section on the for more details about the usage of atomics

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimensionlda x n, withlda>=max(1,n). The imaginary
parts of the diagonal elements are assumed to be zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

4.6. cuBLAS Level-2 Function Reference 81

cuBLAS, Release 12.6

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ lda < n

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemv, zhemv

4.6.18. cublas<t>hbmv()

cublasStatus_t cublasChbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian banded matrix-vector multiplication

y = αAx+ βy

whereA is a n×nHermitian bandedmatrix with k subdiagonals and superdiagonals, x and y are vectors,
and α and β are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the Hermitian banded matrix A is stored column by
column, with themain diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) for j = 1, . . . , n and i ∈ [j,min(m, j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k × k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the Hermitian banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) for j = 1, . . . , n and

82 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

cuBLAS, Release 12.6

i ∈ [max(1, j − k), j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k × k triangle) are not referenced.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

k in-
put

number of sub- and super-diagonals of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimensions lda x n, with lda>=k+1. The imaginary
parts of the diagonal elements are assumed to be zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then does not have to
be a valid input.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if incx = 0 or incy = 0 or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if lda < (k + 1) or
▶ alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

4.6. cuBLAS Level-2 Function Reference 83

cuBLAS, Release 12.6

chbmv, zhbmv

4.6.19. cublas<t>hpmv()

cublasStatus_t cublasChpmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,
const cuComplex *AP,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhpmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian packed matrix-vector multiplication

y = αAx+ βy

where A is a n × n Hermitian matrix stored in packed format, x and y are vectors, and α and β are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

84 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

AP device in-
put

<type> array with A stored in packed format. The imaginary parts of the
diagonal elements are assumed to be zero.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then y does not have
to be a valid input.

y device in/out <type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or incy == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpmv, zhpmv

4.6. cuBLAS Level-2 Function Reference 85

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

cuBLAS, Release 12.6

4.6.20. cublas<t>her()

cublasStatus_t cublasCher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *A, int lda)

cublasStatus_t cublasZher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *A, int lda)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank-1 update

A = αxxH +A

where A is a n× n Hermitian matrix stored in column-major format, x is a vector, and α is a scalar.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n). The imagi-
nary parts of the diagonal elements are assumed and set to zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

The possible error values returned by this function and their meanings are listed below.

86 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if lda < max(1, n) or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher, zher

4.6.21. cublas<t>her2()

cublasStatus_t cublasCher2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasZher2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int lda)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank-2 update

A = αxyH + αyxH +A

where A is a n × n Hermitian matrix stored in column-major format, x and y are vectors, and α is a
scalar.

4.6. cuBLAS Level-2 Function Reference 87

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

y device in-
put

<type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

A device in/out <type> array of dimension lda x nwith lda>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or incy == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if lda < max(1, n) or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2, zher2

88 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

4.6.22. cublas<t>hpr()

cublasStatus_t cublasChpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *AP)

cublasStatus_t cublasZhpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed Hermitian rank-1 update

A = αxxH +A

where A is a n× n Hermitian matrix stored in packed format, x is a vector, and α is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

AP device in/out <type> array with A stored in packed format. The imaginary parts of the
diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 89

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpr, zhpr

4.6.23. cublas<t>hpr2()

cublasStatus_t cublasChpr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *AP)

cublasStatus_t cublasZhpr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed Hermitian rank-2 update

A = αxyH + αyxH +A

where A is a n× n Hermitian matrix stored in packed format, x and y are vectors, and α is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

90 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

n in-
put

number of rows and columns of matrix A.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

x device in-
put

<type> vector with n elements.

incx in-
put

stride between consecutive elements of x.

y device in-
put

<type> vector with n elements.

incy in-
put

stride between consecutive elements of y.

AP device in/out <type> array with A stored in packed format. The imaginary parts of the
diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if incx == 0 or incy == 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpr2, zhpr2

4.6. cuBLAS Level-2 Function Reference 91

cuBLAS, Release 12.6

4.6.24. cublas<t>gemvBatched()

cublasStatus_t cublasSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const float *alpha,
const float *const Aarray[], int lda,
const float *const xarray[], int incx,
const float *beta,
float *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasDgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const double *alpha,
const double *const Aarray[], int lda,
const double *const xarray[], int incx,
const double *beta,
double *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasCgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const cuComplex *alpha,
const cuComplex *const Aarray[], int lda,
const cuComplex *const xarray[], int incx,
const cuComplex *beta,
cuComplex *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasZgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *const Aarray[], int lda,
const cuDoubleComplex *const xarray[], int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *const yarray[], int incy,
int batchCount)

#if defined(__cplusplus)
cublasStatus_t cublasHSHgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

int m, int n,
const float *alpha,
const __half *const Aarray[], int lda,
const __half *const xarray[], int incx,
const float *beta,
__half *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasHSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const float *alpha,
const __half *const Aarray[], int lda,
const __half *const xarray[], int incx,
const float *beta,
float *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasTSTgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const float *alpha,
const __nv_bfloat16 *const Aarray[], int lda,
const __nv_bfloat16 *const xarray[], int incx,

(continues on next page)

92 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

(continued from previous page)

const float *beta,
__nv_bfloat16 *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasTSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const float *alpha,
const __nv_bfloat16 *const Aarray[], int lda,
const __nv_bfloat16 *const xarray[], int incx,
const float *beta,
float *const yarray[], int incy,
int batchCount)

#endif

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension
(lda), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
The address of the input matrix and vector, and the output vector of each instance of the batch are
read from arrays of pointers passed to the function by the caller.

y[i] = αop(A[i])x[i] + βy[i], for i ∈ [0, batchCount− 1]

where α and β are scalars, and A is an array of pointers to matrice A[i] stored in column-major format
with dimensionm× n , and x and y are arrays of pointers to vectors. Also, for matrix A[i] ,

op(A[i]) =

A[i] if trans == CUBLAS_OP_N

A[i]
T if trans == CUBLAS_OP_T

A[i]
H if trans == CUBLAS_OP_C

Note: y[i] vectors must not overlap, i.e. the individual gemv operations must be computable indepen-
dently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv in differ-
ent CUDA streams, rather than use this API.

4.6. cuBLAS Level-2 Function Reference 93

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

handle to the cuBLAS library context.

trans in-
put

operation op(A[i]) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix A[i].

n in-
put

number of columns of matrix A[i].

alpha host or
device

in-
put

<type> scalar used for multiplication.

Aarray device in-
put

array of pointers to <type> array, with each array of dim. lda x nwith
lda>=max(1,m).
All pointersmustmeet certain alignment criteria. Please see below for
details.

lda in-
put

leading dimension of two-dimensional array used to store eachmatrix
A[i].

xarray device in-
put

array of pointers to <type> array, with each dimension n if
trans==CUBLAS_OP_N and m otherwise.
All pointersmustmeet certain alignment criteria. Please see below for
details.

incx in-
put

stride of each one-dimensional array x[i].

beta host or
device

in-
put

<type> scalar used for multiplication. If beta == 0, y does not have
to be a valid input.

yarray device in/out array of pointers to <type> array. It has dimensions m if
trans==CUBLAS_OP_N and n otherwise. Vectors y[i] should not
overlap; otherwise, undefined behavior is expected.
All pointersmustmeet certain alignment criteria. Please see below for
details.

incy in-
put

stride of each one-dimensional array y[i].

batch-
Count

in-
put

number of pointers contained in Aarray, xarray and yarray.

If math mode enables fast math modes when using cublasSgemvBatched(), pointers (not the pointer
arrays) placed in the GPUmemorymust be properly aligned to avoidmisalignedmemory access errors.
Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is recommended that they meet the
following rule:

▶ if k % 4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

94 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,batchCount<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.6.25. cublas<t>gemvStridedBatched()

cublasStatus_t cublasSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const float *A, int lda,
long long int strideA,
const float *x, int incx,
long long int stridex,
const float *beta,
float *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasDgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const double *alpha,
const double *A, int lda,
long long int strideA,
const double *x, int incx,
long long int stridex,
const double *beta,
double *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasCgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
long long int strideA,
const cuComplex *x, int incx,
long long int stridex,
const cuComplex *beta,
cuComplex *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasZgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
long long int strideA,
const cuDoubleComplex *x, int incx,

(continues on next page)

4.6. cuBLAS Level-2 Function Reference 95

cuBLAS, Release 12.6

(continued from previous page)

long long int stridex,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasHSHgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const __half *A, int lda,
long long int strideA,
const __half *x, int incx,
long long int stridex,
const float *beta,
__half *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasHSSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const __half *A, int lda,
long long int strideA,
const __half *x, int incx,
long long int stridex,
const float *beta,
float *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasTSTgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,
__nv_bfloat16 *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasTSSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,
float *y, int incy,
long long int stridey,
int batchCount)

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension

96 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

(lda), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
Input matrix A and vector x, and output vector y for each instance of the batch are located at fixed
offsets in number of elements from their locations in the previous instance. Pointers to A matrix, x
and y vectors for the first instance are passed to the function by the user along with offsets in number
of elements - strideA, stridex and stridey that determine the locations of input matrices and vectors,
and output vectors in future instances.

y+ i ∗ stridey = αop(A+ i ∗ strideA)(x+ i ∗ stridex) + β(y+ i ∗ stridey), for i ∈ [0, batchCount− 1]

where α and β are scalars, and A is an array of pointers to matrix stored in column-major format with
dimension A[i] m× n , and x and y are arrays of pointers to vectors. Also, for matrix A[i]

op(A[i]) =

A[i] if trans == CUBLAS_OP_N

A[i]
T if trans == CUBLAS_OP_T

A[i]
H if trans == CUBLAS_OP_C

Note: y[i] matrices must not overlap, i.e. the individual gemv operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv in differ-
ent CUDA streams, rather than use this API.

Note: In the table below, we use A[i], x[i], y[i] as notation for A matrix, and x and y vectors in
the ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, stridex, stridey away from A[i-1], x[i-1], y[i-1]. The unit for the offset is
number of elements and must not be zero .

4.6. cuBLAS Level-2 Function Reference 97

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

handle to the cuBLAS library context.

trans in-
put

operation op(A[i]) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix A[i].

n in-
put

number of columns of matrix A[i].

alpha host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type>* pointer to the A matrix corresponding to the first instance of
the batch, with dimensions lda x n with lda>=max(1,m).

lda in-
put

leading dimension of two-dimensional array used to store eachmatrix
A[i].

strideA in-
put

Value of type long long int that gives the offset in number of elements
between A[i] and A[i+1]

x device in-
put

<type>* pointer to the x vector corresponding to the first instance
of the batch, with each dimension n if trans==CUBLAS_OP_N and m
otherwise.

incx in-
put

stride of each one-dimensional array x[i].

stridex in-
put

Value of type long long int that gives the offset in number of elements
between x[i] and x[i+1]

beta host or
device

in-
put

<type> scalar used for multiplication. If beta == 0, y does not have
to be a valid input.

y device in/out <type>* pointer to the y vector corresponding to the first instance
of the batch, with each dimension m if trans==CUBLAS_OP_N and n
otherwise. Vectors y[i] should not overlap; otherwise, undefined be-
havior is expected.

incy in-
put

stride of each one-dimensional array y[i].

stridey in-
put

Value of type long long int that gives the offset in number of elements
between y[i] and y[i+1]

batch-
Count

in-
put

number of GEMVs to perform in the batch.

The possible error values returned by this function and their meanings are listed below.

98 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,batchCount<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.7. cuBLAS Level-3 Function Reference

In this chapter we describe the Level-3 Basic Linear Algebra Subprograms (BLAS3) functions that per-
form matrix-matrix operations.

4.7.1. cublas<t>gemm()

cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasDgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

cublasStatus_t cublasHgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 99

cuBLAS, Release 12.6

(continued from previous page)

int m, int n, int k,
const __half *alpha,
const __half *A, int lda,
const __half *B, int ldb,
const __half *beta,
__half *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication

C = αop(A)op(B) + βC

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× k , op(B) k × n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

100 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

transa in-
put

operation op(A) that is non- or (conj.) transpose.

transb in-
put

operation op(B) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A) and C.

n in-
put

number of columns of matrix op(B) and C.

k in-
put

number of columns of op(A) and rows of op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimensions lda x kwith lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store the matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,k) if transb ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication. If beta==0, C does not have to be
a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of a two-dimensional array used to store the matrix C.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 101

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n, k < 0 or
▶ if transa, transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ if alpha, beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_ARCH_MISMATCH in the case of cublasHgemm() the device does not
support math in half precision.

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgemm, dgemm, cgemm, zgemm

4.7.2. cublas<t>gemm3m()

cublasStatus_t cublasCgemm3m(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZgemm3m(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the complex matrix-matrix multiplication, using Gauss complexity reduction
algorithm. This can lead to an increase in performance up to 25%

C = αop(A)op(B) + βC

102 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.6

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× k , op(B) k × n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

Note: These 2 routines are only supported on GPUs with architecture capabilities equal to or greater
than 5.0

Param.Memory In/out Meaning

han-
dle

in-
put

Handle to the cuBLAS library context.

transa in-
put

Operation op(A) that is non- or (conj.) transpose.

transb in-
put

Operation op(B) that is non- or (conj.) transpose.

m in-
put

Number of rows of matrix op(A) and C.

n in-
put

Number of columns of matrix op(B) and C.

k in-
put

Number of columns of op(A) and rows of op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimensions lda x kwith lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

lda in-
put

Leading dimension of two-dimensional array used to store the matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,k) if transb ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

ldb in-
put

Leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication. If beta==0, C does not have to be
a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

Leading dimension of a two-dimensional array used to store the matrix
C.

The possible error values returned by this function and their meanings are listed in the following table:

4.7. cuBLAS Level-3 Function Reference 103

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n, k < 0 or
▶ if transa, transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ if alpha, beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capabilites lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to:

cgemm, zgemm

4.7.3. cublas<t>gemmBatched()

cublasStatus_t cublasHgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const __half *alpha,
const __half *const Aarray[], int lda,
const __half *const Barray[], int ldb,
const __half *beta,
__half *const Carray[], int ldc,
int batchCount)

cublasStatus_t cublasSgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *const Aarray[], int lda,
const float *const Barray[], int ldb,
const float *beta,
float *const Carray[], int ldc,
int batchCount)

cublasStatus_t cublasDgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

(continues on next page)

104 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.6

(continued from previous page)

int m, int n, int k,
const double *alpha,
const double *const Aarray[], int lda,
const double *const Barray[], int ldb,
const double *beta,
double *const Carray[], int ldc,
int batchCount)

cublasStatus_t cublasCgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *const Aarray[], int lda,
const cuComplex *const Barray[], int ldb,
const cuComplex *beta,
cuComplex *const Carray[], int ldc,
int batchCount)

cublasStatus_t cublasZgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *const Aarray[], int lda,
const cuDoubleComplex *const Barray[], int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *const Carray[], int ldc,
int batchCount)

This function supports the 64-bit Integer Interface.

This function performs thematrix-matrixmultiplication of a batch ofmatrices. The batch is considered
to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda, ldb, ldc)
and transpositions (transa, transb) for their respective A, B and C matrices. The address of the input
matrices and the output matrix of each instance of the batch are read from arrays of pointers passed
to the function by the caller.

C[i] = αop(A[i])op(B[i]) + βC[i], for i ∈ [0, batchCount− 1]

where α and β are scalars, and A , B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m× k , op(B[i]) k × n and C[i] m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B[i]) is defined similarly for matrix B[i] .

Note: C[i] matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm in dif-
ferent CUDA streams, rather than use this API.

4.7. cuBLAS Level-3 Function Reference 105

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

handle to the cuBLAS library context.

transa in-
put

operation op(A[i]) that is non- or (conj.) transpose.

transb in-
put

operation op(B[i]) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A[i]) and C[i].

n in-
put

number of columns of op(B[i]) and C[i].

k in-
put

number of columns of op(A[i]) and rows of op(B[i]).

alpha host or
device

in-
put

<type> scalar used for multiplication.

Aarray device in-
put

array of pointers to <type> array, with each array of dim. lda x k
with lda>=max(1,m) if transa==CUBLAS_OP_N and lda x m with
lda>=max(1,k) otherwise.
All pointersmustmeet certain alignment criteria. Please see below for
details.

lda in-
put

leading dimension of two-dimensional array used to store eachmatrix
A[i].

Barray device in-
put

array of pointers to <type> array, with each array of dim. ldb x n
with ldb>=max(1,k) if transb==CUBLAS_OP_N and ldb x k with
ldb>=max(1,n)max(1,) otherwise.
All pointersmustmeet certain alignment criteria. Please see below for
details.

ldb in-
put

leading dimension of two-dimensional array used to store eachmatrix
B[i].

beta host or
device

in-
put

<type> scalar used for multiplication. If beta == 0, C does not have
to be a valid input.

Carray device in/out array of pointers to <type> array. It has dimensions ldc x n with
ldc>=max(1,m). Matrices C[i] should not overlap; otherwise, unde-
fined behavior is expected.
All pointersmustmeet certain alignment criteria. Please see below for
details.

ldc in-
put

leading dimension of two-dimensional array used to store eachmatrix
C[i].

batch-
Count

in-
put

number of pointers contained in Aarray, Barray and Carray.

If math mode enables fast math modes when using cublasSgemmBatched(), pointers (not the pointer
arrays) placed in the GPUmemorymust be properly aligned to avoidmisalignedmemory access errors.
Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is recommended that they meet the
following rule:

106 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

▶ if k%4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n, k, batchCount < 0 or
▶ if transa, transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_ARCH_MISMATCH cublasHgemmBatched() is only supported for
GPU with architecture capabilities equal or
greater than 5.3

4.7.4. cublas<t>gemmStridedBatched()

cublasStatus_t cublasHgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const __half *alpha,
const __half *A, int lda,
long long int strideA,
const __half *B, int ldb,
long long int strideB,
const __half *beta,
__half *C, int ldc,
long long int strideC,
int batchCount)

cublasStatus_t cublasSgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
long long int strideA,
const float *B, int ldb,
long long int strideB,
const float *beta,
float *C, int ldc,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 107

cuBLAS, Release 12.6

(continued from previous page)

long long int strideC,
int batchCount)

cublasStatus_t cublasDgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
long long int strideA,
const double *B, int ldb,
long long int strideB,
const double *beta,
double *C, int ldc,
long long int strideC,
int batchCount)

cublasStatus_t cublasCgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
long long int strideA,
const cuComplex *B, int ldb,
long long int strideB,
const cuComplex *beta,
cuComplex *C, int ldc,
long long int strideC,
int batchCount)

cublasStatus_t cublasCgemm3mStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
long long int strideA,
const cuComplex *B, int ldb,
long long int strideB,
const cuComplex *beta,
cuComplex *C, int ldc,
long long int strideC,
int batchCount)

cublasStatus_t cublasZgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
long long int strideA,
const cuDoubleComplex *B, int ldb,
long long int strideB,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc,
long long int strideC,
int batchCount)

This function supports the 64-bit Integer Interface.

This function performs thematrix-matrixmultiplication of a batch ofmatrices. The batch is considered

108 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda, ldb, ldc)
and transpositions (transa, transb) for their respective A, B and C matrices. Input matrices A, B and
output matrix C for each instance of the batch are located at fixed offsets in number of elements
from their locations in the previous instance. Pointers to A, B and C matrices for the first instance are
passed to the function by the user along with offsets in number of elements - strideA, strideB and
strideC that determine the locations of input and output matrices in future instances.

C + i ∗ strideC = αop(A+ i ∗ strideA)op(B+ i ∗ strideB) + β(C + i ∗ strideC), for i ∈ [0, batchCount− 1]

where α and β are scalars, and A , B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m× k , op(B[i]) k × n and C[i] m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B[i]) is defined similarly for matrix B[i] .

Note: C[i]matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, we use A[i], B[i], C[i] as notation for A, B and C matrices in the
ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, strideB, strideC away from A[i-1], B[i-1], C[i-1]. The unit for the offset is
number of elements and must not be zero .

4.7. cuBLAS Level-3 Function Reference 109

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

handle to the cuBLAS library context.

transa in-
put

operation op(A[i]) that is non- or (conj.) transpose.

transb in-
put

operation op(B[i]) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A[i]) and C[i].

n in-
put

number of columns of op(B[i]) and C[i].

k in-
put

number of columns of op(A[i]) and rows of op(B[i]).

alpha host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type>* pointer to the A matrix corresponding to the first instance
of the batch, with dimensions lda x k with lda>=max(1,m) if
transa==CUBLAS_OP_N and lda x m with lda>=max(1,k) other-
wise.

lda in-
put

leading dimension of two-dimensional array used to store eachmatrix
A[i].

strideA in-
put

Value of type long long int that gives the offset in number of elements
between A[i] and A[i+1]

B device in-
put

<type>* pointer to the B matrix corresponding to the first instance
of the batch, with dimensions ldb x n with ldb>=max(1,k) if
transb==CUBLAS_OP_N and ldb x k with ldb>=max(1,n) max(1,)
otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store eachmatrix
B[i].

strideB in-
put

Value of type long long int that gives the offset in number of elements
between B[i] and B[i+1]

beta host or
device

in-
put

<type> scalar used for multiplication. If beta == 0, C does not have
to be a valid input.

C device in/out <type>* pointer to the C matrix corresponding to the first instance of
the batch, with dimensions ldc x n with ldc>=max(1,m). Matrices
C[i] should not overlap; otherwise, undefined behavior is expected.

ldc in-
put

leading dimension of two-dimensional array used to store eachmatrix
C[i].

strideC in-
put

Value of type long long int that gives the offset in number of elements
between C[i] and C[i+1]

batch-
Count

in-
put

number of GEMMs to perform in the batch.

110 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n, k, batchCount < 0 or
▶ if transa, transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_ARCH_MISMATCH cublasHgemmStridedBatched() is only supported
for GPU with architecture capabilities equal or
greater than 5.3

4.7.5. cublas<t>gemmGroupedBatched()

cublasStatus_t cublasSgemmGroupedBatched(cublasHandle_t handle,
const cublasOperation_t transa_array[],
const cublasOperation_t transb_array[],
const int m_array[],
const int n_array[],
const int k_array[],
const float alpha_array[],
const float *const Aarray[],
const int lda_array[],
const float *const Barray[],
const int ldb_array[],
const float beta_array[],
float *const Carray[],
const int ldc_array[],
int group_count,
const int group_size[])

cublasStatus_t cublasDgemmGroupedBatched(cublasHandle_t handle,
const cublasOperation_t transa_array[],
const cublasOperation_t transb_array[],
const int m_array[],
const int n_array[],
const int k_array[],
const double alpha_array[],
const double *const Aarray[],
const int lda_array[],
const double *const Barray[],

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 111

cuBLAS, Release 12.6

(continued from previous page)

const int ldb_array[],
const double beta_array[],
double *const Carray[],
const int ldc_array[],
int group_count,
const int group_size[])

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication on groups of matrices. A given group is con-
sidered to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda,
ldb, ldc) and transpositions (transa, transb) for their respective A, B and C matrices. However, the
dimensions, leading dimensions, transpositions, and scaling factors (alpha, beta) may vary between
groups. The address of the input matrices and the output matrix of each instance of the batch are
read from arrays of pointers passed to the function by the caller. This is functionally equivalent to the
following:

idx = 0;
for i = 0:group_count - 1

for j = 0:group_size[i] - 1
gemm(transa_array[i], transb_array[i], m_array[i], n_array[i], k_array[i],

alpha_array[i], Aarray[idx], lda_array[i], Barray[idx], ldb_array[i],
beta_array[i], Carray[idx], ldc_array[i]);

idx += 1;
end

end

where alpha_array and beta_array are arrays of scaling factors, andAarray, Barray andCarray are arrays
of pointers to matrices stored in column-major format. For a given index, idx, that is part of group i,
the dimensions are:

▶ op(Aarray[idx]): m_array[i]× k_array[i]

▶ op(Barray[idx]): k_array[i]× n_array[i]

▶ Carray[idx]: m_array[i]× n_array[i]

Note: This API takes arrays of two different lengths. The arrays of dimensions, leading dimensions,
transpositions, and scaling factors are of length group_count and the arrays ofmatrices are of length
problem_count where problem_count =

∑group_count−1
i=0 group_size[i]

For matrix A[idx] in group i

op(A[idx]) =

A[idx] if transa_array[i] == CUBLAS_OP_N

A[idx]T if transa_array[i] == CUBLAS_OP_T

A[idx]H if transa_array[i] == CUBLAS_OP_C

and op(B[idx]) is defined similarly for matrix B[idx] in group i.

Note: C[idx]matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemmBatched
in different CUDA streams, rather than use this API.

112 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Mem-
ory

In/outMeaning Array
Length

handle in-
put

handle to the cuBLAS library context.

transa_arrayhost in-
put

array containing the operations, op(A[idx]), that is non- or
(conj.) transpose for each group.

group_count

transb_arrayhost in-
put

array containing the operations, op(B[idx]), that is non- or
(conj.) transpose for each group.

group_count

m_array host in-
put

array containing the number of rows of matrix op(A[idx]) and
C[idx] for each group.

group_count

n_array host in-
put

array containing the number of columns of op(B[idx]) and
C[idx] for each group.

group_count

k_array host in-
put

array containing the number of columns of op(A[idx]) and
rows of op(B[idx]) for each group.

group_count

al-
pha_array

host in-
put

array containing the <type> scalar used for multiplication for
each group.

group_count

Aarray de-
vice

in-
put

array of pointers to <type> array, with each array of
dim. lda[i] x k[i] with lda[i]>=max(1,m[i]) if
transa[i]==CUBLAS_OP_N and lda[i] x m[i] with
lda[i]>=max(1,k[i]) otherwise.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

lda_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix A[idx] for each group.

group_count

Barray de-
vice

in-
put

array of pointers to <type> array, with each array of
dim. ldb[i] x n[i] with ldb[i]>=max(1,k[i]) if
transb[i]==CUBLAS_OP_N and ldb[i] x k[i] with
ldb[i]>=max(1,n[i]) otherwise.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

ldb_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix B[idx] for each group.

group_count

beta_arrayhost in-
put

array containing the <type> scalar used for multiplication for
each group.

group_count

Carray de-
vice

in/outarray of pointers to <type> array. It has dimensions ldc[i] x
n[i] with ldc[i]>=max(1,m[i]). Matrices C[idx] should
not overlap; otherwise, undefined behavior is expected.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

ldc_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix C[idx] for each group.

group_count

group_counthost in-
put

number of groups

group_sizehost in-
put

array containg the number of pointers contained in Aarray, Bar-
ray and Carray for each group.

group_count

4.7. cuBLAS Level-3 Function Reference 113

cuBLAS, Release 12.6

If math mode enables fast math modes when using cublasSgemmGroupedBatched(), pointers (not the
pointer arrays) placed in theGPUmemorymust be properly aligned to avoidmisalignedmemory access
errors. Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is required that they meet the
following rule:

▶ if k%4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If transa_array, transb_array,

m_array, n_array, k_array, al-
pha_array, lda_array, ldb_array,
beta_array, ldc_array, or group_size
are NULL or

▶ if group_count < 0 or
▶ if m_array[i], n_array[i], k_array[i],

group_size[i] < 0 or
▶ if transa_array[i], transb_array[i]

!= CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

▶ if lda_array[i] < max(1, m_array[i]) if
transa_array[i] == CUBLAS_OP_N and
lda_array[i] <max(1, k_array[i]) oth-
erwise or

▶ if ldb_array[i] < max(1, k_array[i]) if
transb_array[i] == CUBLAS_OP_N and
ldb_array[i] <max(1, n_array[i]) oth-
erwise or

▶ if ldc_array[i] < max(1, m_array[i])

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_NOT_SUPPORTED the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE

4.7.6. cublas<t>symm()

cublasStatus_t cublasSsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasDsymm(cublasHandle_t handle,
(continues on next page)

114 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

(continued from previous page)

cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the symmetric matrix-matrix multiplication

C =

αAB + βC if side == CUBLAS_SIDE_LEFT

αBA+ βC if side == CUBLAS_SIDE_RIGHT

where A is a symmetric matrix stored in lower or upper mode, B and C arem× nmatrices, and α and
β are scalars.

4.7. cuBLAS Level-3 Function Reference 115

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

m in-
put

number of rows of matrix C and B, with matrix A sized accordingly.

n in-
put

number of columns of matrix C and B, with matrix A sized accordingly.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta == 0 then C does not have
to be a valid input.

C device in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

116 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n < 0 or
▶ if side != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if lda < max(1, m) if side ==

CUBLAS_SIDE_LEFT and lda < max(1,
n) otherwise or

▶ if ldb < max(1, m) or
▶ if ldc < max(1, m) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

4.7.7. cublas<t>syrk()

cublasStatus_t cublasSsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const float *A, int lda,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasDsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const double *A, int lda,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 117

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

cuBLAS, Release 12.6

(continued from previous page)

const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank- k update

C = αop(A)op(A)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A) and C.

k in-
put

number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if trans ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

118 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n, k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

4.7.8. cublas<t>syr2k()

cublasStatus_t cublasSsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasDsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 119

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.6

(continued from previous page)

const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank- 2k update

C = α(op(A)op(B)T + op(B)op(A)T) + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AT and BT if trans == CUBLAS_OP_T

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimensions ldb x kwith ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0, then C does not have
to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

120 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n, k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ ifldb <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2k, dsyr2k, csyr2k, zsyr2k

4.7.9. cublas<t>syrkx()

cublasStatus_t cublasSsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasDsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZsyrkx(cublasHandle_t handle,
(continues on next page)

4.7. cuBLAS Level-3 Function Reference 121

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.6

(continued from previous page)

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs a variation of the symmetric rank- k update

C = αop(A)op(B)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrices A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AT and BT if trans == CUBLAS_OP_T

This routine can be used when B is in such way that the result is guaranteed to be symmetric. A usual
example is when the matrix B is a scaled form of the matrix A: this is equivalent to B being the product
of the matrix A and a diagonal matrix. For an efficient computation of the product of a regular matrix
with a diagonal matrix, refer to the routine cublas<t>dgmm.

122 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimensions ldb x kwith ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0, then C does not have
to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 123

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n, k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ ifldb <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk and

ssyr2k, dsyr2k, csyr2k, zsyr2k

4.7.10. cublas<t>trmm()

cublasStatus_t cublasStrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
float *C, int ldc)

cublasStatus_t cublasDtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
double *C, int ldc)

cublasStatus_t cublasCtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
cuComplex *C, int ldc)

(continues on next page)

124 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.6

(continued from previous page)

cublasStatus_t cublasZtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the triangular matrix-matrix multiplication

C =

αop(A)B if side == CUBLAS_SIDE_LEFT

αBop(A) if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, B and
C arem× nmatrix, and α is a scalar. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

Notice that in order to achieve better parallelismcuBLASdiffers from theBLASAPI only for this routine.
The BLAS API assumes an in-place implementation (with results written back to B), while the cuBLAS
API assumes an out-of-place implementation (with results written into C). The application can obtain
the in-place functionality of BLAS in the cuBLAS API by passing the address of the matrix B in place
of the matrix C. No other overlapping in the input parameters is supported.

4.7. cuBLAS Level-3 Function Reference 125

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not
referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

m in-
put

number of rows of matrix B, with matrix A sized accordingly.

n in-
put

number of columns of matrix B, with matrix A sized accordingly.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication, if alpha==0 then A is not refer-
enced and B does not have to be a valid input.

A device in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

C device in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

126 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m, n < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if side != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if lda < max(1, m) if side ==

CUBLAS_SIDE_LEFT and lda < max(1,
n) otherwise or

▶ if ldb < max(1, m) or
▶ C == NULL if C needs to be scaled

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmm, dtrmm, ctrmm, ztrmm

4.7.11. cublas<t>trsm()

cublasStatus_t cublasStrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const float *alpha,
const float *A, int lda,
float *B, int ldb)

cublasStatus_t cublasDtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const double *alpha,
const double *A, int lda,
double *B, int ldb)

cublasStatus_t cublasCtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
cuComplex *B, int ldb)

cublasStatus_t cublasZtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 127

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

cuBLAS, Release 12.6

(continued from previous page)

const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
cuDoubleComplex *B, int ldb)

This function supports the 64-bit Integer Interface.

This function solves the triangular linear system with multiple right-hand-sidesop(A)X = αB if side == CUBLAS_SIDE_LEFT

Xop(A) = αB if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal,X and
B arem× nmatrices, and α is a scalar. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides B on exit.

No test for singularity or near-singularity is included in this function.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

side in-
put

indicates if matrix A is on the left or right of X.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not
referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

m in-
put

number of rows of matrix B, with matrix A sized accordingly.

n in-
put

number of columns of matrix B, with matrix A is sized accordingly.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication, if alpha==0 then A is not refer-
enced and B does not have to be a valid input.

A device in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in/out <type> array. It has dimensions ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

128 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if side != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if diag != CUBLAS_DIAG_NON_UNIT,

CUBLAS_DIAG_UNIT or
▶ if lda < max(1, m) if side ==

CUBLAS_SIDE_LEFT and lda < max(1,
n) otherwise or

▶ if ldb < max(1, m) or
▶ alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

4.7.12. cublas<t>trsmBatched()

cublasStatus_t cublasStrsmBatched(cublasHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
cublasDiagType_t diag,
int m,
int n,
const float *alpha,
const float *const A[],
int lda,
float *const B[],
int ldb,
int batchCount);

cublasStatus_t cublasDtrsmBatched(cublasHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
cublasDiagType_t diag,
int m,
int n,
const double *alpha,

(continues on next page)

4.7. cuBLAS Level-3 Function Reference 129

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.6

(continued from previous page)

const double *const A[],
int lda,
double *const B[],
int ldb,
int batchCount);

cublasStatus_t cublasCtrsmBatched(cublasHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
cublasDiagType_t diag,
int m,
int n,
const cuComplex *alpha,
const cuComplex *const A[],
int lda,
cuComplex *const B[],
int ldb,
int batchCount);

cublasStatus_t cublasZtrsmBatched(cublasHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
cublasDiagType_t diag,
int m,
int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *const A[],
int lda,
cuDoubleComplex *const B[],
int ldb,
int batchCount);

This function supports the 64-bit Integer Interface.

This function solves an array of triangular linear systems with multiple right-hand-sidesop(A[i])X[i] = αB[i] if side == CUBLAS_SIDE_LEFT

X[i]op(A[i]) = αB[i] if side == CUBLAS_SIDE_RIGHT

where A[i] is a triangular matrix stored in lower or upper mode with or without the main diagonal,X[i]
and B[i] arem× nmatrices, and α is a scalar. Also, for matrix A

op(A[i]) =

A[i] if transa == CUBLAS_OP_N

AT [i] if transa == CUBLAS_OP_T

AH [i] if transa == CUBLAS_OP_C

The solution X[i] overwrites the right-hand-sides B[i] on exit.

No test for singularity or near-singularity is included in this function.

This function works for any sizes but is intended to be used for matrices of small sizes where the
launch overhead is a significant factor. For bigger sizes, it might be advantageous to call batchCount
times the regular cublas<t>trsm within a set of CUDA streams.

The current implementation is limited to devices with compute capability above or equal 2.0.

130 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

handle to the cuBLAS library context.

side in-
put

indicates if matrix A[i] is on the left or right of X[i].

uplo in-
put

indicates if matrix A[i] lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A[i]) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on themain diagonal ofmatrix A[i] are unity
and should not be accessed.

m in-
put

number of rows of matrix B[i], with matrix A[i] sized accordingly.

n in-
put

number of columns of matrix B[i], with matrix A[i] is sized accord-
ingly.

alpha host or
device

in-
put

<type> scalar used for multiplication, if alpha==0 then A[i] is not
referenced and B[i] does not have to be a valid input.

A device in-
put

array of pointers to <type> array, with each array of dim. lda x mwith
lda>=max(1,m) if side == CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to storematrixA[i].

B device in/out array of pointers to <type> array, with each array of dim. ldb x n
with ldb>=max(1,m). Matrices B[i] should not overlap; otherwise,
undefined behavior is expected.

ldb in-
put

leading dimension of two-dimensional array used to storematrixB[i].

batch-
Count

in-
put

number of pointers contained in A and B.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 131

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or batchCount < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if side != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if diag != CUBLAS_DIAG_NON_UNIT,

CUBLAS_DIAG_UNIT or
▶ if lda < max(1, m) if side ==

CUBLAS_SIDE_LEFT and lda < max(1,
n) otherwise or

▶ ldb < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

4.7.13. cublas<t>hemm()

cublasStatus_t cublasChemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZhemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian matrix-matrix multiplication

C =

αAB + βC if side == CUBLAS_SIDE_LEFT

αBA+ βC if side == CUBLAS_SIDE_RIGHT

132 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.6

where A is a Hermitian matrix stored in lower or upper mode, B and C are m × n matrices, and α and
β are scalars.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

m in-
put

number of rows of matrix C and B, with matrix A sized accordingly.

n in-
put

number of columns of matrix C and B, with matrix A sized accordingly.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x m with lda>=max(1,m) if
side==CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) oth-
erwise. The imaginary parts of the diagonal elements are assumed to be
zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 133

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or
▶ if side != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ if lda < max(1, m) if side ==

CUBLAS_SIDE_LEFT and lda < max(1,
n) otherwise or

▶ if ldb < max(1, m) or
▶ if ldc < max(1, m) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemm, zhemm

4.7.14. cublas<t>herk()

cublasStatus_t cublasCherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const cuComplex *A, int lda,
const float *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const cuDoubleComplex *A, int lda,
const double *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank- k update

C = αop(A)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AH if transa == CUBLAS_OP_C

134 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A) and C.

k in-
put

number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

beta in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

4.7. cuBLAS Level-3 Function Reference 135

cuBLAS, Release 12.6

cherk, zherk

4.7.15. cublas<t>her2k()

cublasStatus_t cublasCher2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const float *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZher2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const double *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank- 2k update

C = αop(A)op(B)H + αop(B)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AH and BH if trans == CUBLAS_OP_C

136 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimension ldb x k with ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 137

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ ifldb <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2k, zher2k

4.7.16. cublas<t>herkx()

cublasStatus_t cublasCherkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const float *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZherkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const double *beta,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs a variation of the Hermitian rank- k update

C = αop(A)op(B)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

138 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.6

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AH and BH if trans == CUBLAS_OP_C

This routine can be used when thematrix B is in such way that the result is guaranteed to be hermitian.
An usual example is when the matrix B is a scaled form of the matrix A: this is equivalent to B being
the product of the matrix A and a diagonal matrix. For an efficient computation of the product of a
regular matrix with a diagonal matrix, refer to the routine cublas<t>dgmm.

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B device in-
put

<type> array of dimension ldb x k with ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

real scalar used for multiplication, if beta==0 then C does not have to be
a valid input.

C device in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

4.7. cuBLAS Level-3 Function Reference 139

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if uplo != CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ ifldb <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ if alpha == NULL or beta == NULL or
▶ C == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk and

cher2k, zher2k

4.8. BLAS-like Extension

This section describes the BLAS-extension functions that perform matrix-matrix operations.

4.8.1. cublas<t>geam()

cublasStatus_t cublasSgeam(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n,
const float *alpha,
const float *A, int lda,
const float *beta,
const float *B, int ldb,
float *C, int ldc)

cublasStatus_t cublasDgeam(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n,
const double *alpha,
const double *A, int lda,
const double *beta,
const double *B, int ldb,
double *C, int ldc)

(continues on next page)

140 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f
http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.6

(continued from previous page)

cublasStatus_t cublasCgeam(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *beta ,
const cuComplex *B, int ldb,
cuComplex *C, int ldc)

cublasStatus_t cublasZgeam(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
const cuDoubleComplex *B, int ldb,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix addition/transposition

C = αop(A) + βop(B)

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× n , op(B) m× n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

The operation is out-of-place if C does not overlap A or B.

The in-place mode supports the following two operations,

C = α*C + βop(B)

C = αop(A) + β*C

For in-placemode, if C = A, ldc = lda and transa = CUBLAS_OP_N. If C = B, ldc = ldb and transb
= CUBLAS_OP_N. If the user does not meet above requirements, CUBLAS_STATUS_INVALID_VALUE is
returned.

The operation includes the following special cases:

the user can reset matrix C to zero by setting *alpha=*beta=0.

the user can transpose matrix A by setting *alpha=1 and *beta=0.

4.8. BLAS-like Extension 141

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

transa in-
put

operation op(A) that is non- or (conj.) transpose.

transb in-
put

operation op(B) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A) and C.

n in-
put

number of columns of matrix op(B) and C.

al-
pha

host or
device

in-
put

<type> scalar used for multiplication. If *alpha == 0, A does not have
to be a valid input.

A device in-
put

<type> array of dimensions lda x n with lda>=max(1,m) if transa
== CUBLAS_OP_N and lda x m with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store the matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,m) if transb ==
CUBLAS_OP_N and ldb x m with ldb>=max(1,n) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication. If *beta == 0, B does not have to
be a valid input.

C device out-
put

<type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of a two-dimensional array used to store the matrix
C.

The possible error values returned by this function and their meanings are listed below.

142 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or
▶ if transa != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if transb != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, n) other-
wise or

▶ if ldb < max(1, m) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ if A == C, ((CUBLAS_OP_N != transa) || (lda

!= ldc)) or
▶ if B == C, ((CUBLAS_OP_N != transb) || (ldb

!= ldc)) or
▶ alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.8.2. cublas<t>dgmm()

cublasStatus_t cublasSdgmm(cublasHandle_t handle, cublasSideMode_t mode,
int m, int n,
const float *A, int lda,
const float *x, int incx,
float *C, int ldc)

cublasStatus_t cublasDdgmm(cublasHandle_t handle, cublasSideMode_t mode,
int m, int n,
const double *A, int lda,
const double *x, int incx,
double *C, int ldc)

cublasStatus_t cublasCdgmm(cublasHandle_t handle, cublasSideMode_t mode,
int m, int n,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
cuComplex *C, int ldc)

cublasStatus_t cublasZdgmm(cublasHandle_t handle, cublasSideMode_t mode,
int m, int n,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *C, int ldc)

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication

4.8. BLAS-like Extension 143

cuBLAS, Release 12.6

C =

A× diag(X) if mode == CUBLAS_SIDE_RIGHT

diag(X)×A if mode == CUBLAS_SIDE_LEFT

where A and C are matrices stored in column-major format with dimensions m × n . X is a vector of
size n if mode == CUBLAS_SIDE_RIGHT and of sizem if mode == CUBLAS_SIDE_LEFT.X is gathered
from one-dimensional array x with stride incx. The absolute value of incx is the stride and the sign of
incx is direction of the stride. If incx is positive, then we forward x from the first element. Otherwise,
we backward x from the last element. The formula of X is

X[j] =

 x[j × incx] if incx ≥ 0

x[(χ− 1)× |incx| − j × |incx|] if incx < 0

where χ = m if mode == CUBLAS_SIDE_LEFT and χ = n if mode == CUBLAS_SIDE_RIGHT.

Example 1: if the user wants to perform diag(diag(B)) × A , then incx = ldb + 1 where ldb is leading
dimension of matrix B, either row-major or column-major.

Example 2: if the user wants to perform α × A , then there are two choices, either cublas<t>geam()
with *beta=0 and transa == CUBLAS_OP_N or cublas<t>dgmm() with incx=0 and x[0]=alpha.

The operation is out-of-place. The in-place only works if lda = ldc.

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

mode in-
put

left multiply if mode == CUBLAS_SIDE_LEFT or right multiply if mode ==
CUBLAS_SIDE_RIGHT

m in-
put

number of rows of matrix A and C.

n in-
put

number of columns of matrix A and C.

A device in-
put

<type> array of dimensions lda x n with lda>=max(1,m)

lda in-
put

leading dimension of two-dimensional array used to store the matrix A.

x device in-
put

one-dimensional <type> array of size |inc| × m if mode ==
CUBLAS_SIDE_LEFT and |inc| × n if mode == CUBLAS_SIDE_RIGHT

incx in-
put

stride of one-dimensional array x.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of a two-dimensional array used to store the matrix C.

The possible error values returned by this function and their meanings are listed below.

144 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or
▶ if mode != CUBLAS_SIDE_LEFT,

CUBLAS_SIDE_RIGHT or
▶ if lda < max(1, m) or
▶ ldc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.8.3. cublas<t>getrfBatched()

cublasStatus_t cublasSgetrfBatched(cublasHandle_t handle,
int n,
float *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasDgetrfBatched(cublasHandle_t handle,
int n,
double *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasCgetrfBatched(cublasHandle_t handle,
int n,
cuComplex *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasZgetrfBatched(cublasHandle_t handle,
int n,
cuDoubleComplex *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with dimensions nxn and
leading dimension lda.

This function performs the LU factorization of each Aarray[i] for i = 0, …, batchSize-1 by the
following equation

4.8. BLAS-like Extension 145

cuBLAS, Release 12.6

P*Aarray[i] = L*U

where P is a permutation matrix which represents partial pivoting with row interchanges. L is a lower
triangular matrix with unit diagonal and U is an upper triangular matrix.

Formally P is written by a product of permutation matrices Pj, for j = 1,2,...,n, say P = P1 *
P2 * P3 * * Pn. Pj is a permutation matrix which interchanges two rows of vector x when
performing Pj*x. Pj can be constructed by j element of PivotArray[i] by the following Matlab
code

∕∕ In Matlab PivotArray[i] is an array of base-1.
∕∕ In C, PivotArray[i] is base-0.
Pj = eye(n);
swap Pj(j,:) and Pj(PivotArray[i][j] ,:)

L and U are written back to original matrix A, and diagonal elements of L are discarded. The L and U
can be constructed by the following Matlab code

∕∕ A is a matrix of nxn after getrf.
L = eye(n);
for j = 1:n

L(j+1:n,j) = A(j+1:n,j)
end
U = zeros(n);
for i = 1:n

U(i,i:n) = A(i,i:n)
end

If matrix A(=Aarray[i]) is singular, getrf still works and the value of info(=infoArray[i]) reports
first row index that LU factorization cannot proceed. If info is k, U(k,k) is zero. The equation P*A=L*U
still holds, however L and U reconstruction needs different Matlab code as follows:

∕∕ A is a matrix of nxn after getrf.
∕∕ info is k, which means U(k,k) is zero.
L = eye(n);
for j = 1:k-1

L(j+1:n,j) = A(j+1:n,j)
end
U = zeros(n);
for i = 1:k-1

U(i,i:n) = A(i,i:n)
end
for i = k:n

U(i,k:n) = A(i,k:n)
end

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

cublas<t>getrfBatched supports non-pivot LU factorization if PivotArray is NULL.

cublas<t>getrfBatched supports arbitrary dimension.

cublas<t>getrfBatched only supports compute capability 2.0 or above.

146 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

handle input handle to the cuBLAS library context.

n input number of rows and columns of Aarray[i].

Aarray de-
vice

in-
put/output

array of pointers to <type> array, with each array of dim. n x n with
lda>=max(1,n). Matrices Aarray[i] should not overlap; otherwise,
undefined behavior is expected.

lda input leading dimension of two-dimensional array used to store each matrix
Aarray[i].

Piv-
otAr-
ray

de-
vice

output array of size n x batchSize that contains the pivoting sequence of
each factorization of Aarray[i] stored in a linear fashion. If Piv-
otArray is NULL, pivoting is disabled.

infoAr-
ray

de-
vice

output array of size batchSize that info(=infoArray[i]) contains the informa-
tion of factorization of Aarray[i].
If info=0, the execution is successful.
If info = -j, the j-th parameter had an illegal value.
If info = k, U(k,k) is 0. The factorization has been completed, but U is
exactly singular.

batch-
Size

input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,batchSize,lda <0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrf, dgeqrf, cgeqrf, zgeqrf

4.8.4. cublas<t>getrsBatched()

cublasStatus_t cublasSgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const float *const Aarray[],
int lda,
const int *devIpiv,
float *const Barray[],
int ldb,

(continues on next page)

4.8. BLAS-like Extension 147

http://www.netlib.no/netlib/lapack/single/sgetrf.f
http://www.netlib.no/netlib/lapack/double/dgetrf.f
http://www.netlib.no/netlib/lapack/complex/cgetrf.f
http://www.netlib.no/netlib/lapack/complex16/zgetrf.f

cuBLAS, Release 12.6

(continued from previous page)

int *info,
int batchSize);

cublasStatus_t cublasDgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const double *const Aarray[],
int lda,
const int *devIpiv,
double *const Barray[],
int ldb,
int *info,
int batchSize);

cublasStatus_t cublasCgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const cuComplex *const Aarray[],
int lda,
const int *devIpiv,
cuComplex *const Barray[],
int ldb,
int *info,
int batchSize);

cublasStatus_t cublasZgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const cuDoubleComplex *const Aarray[],
int lda,
const int *devIpiv,
cuDoubleComplex *const Barray[],
int ldb,
int *info,
int batchSize);

This function solves an array of systems of linear equations of the form:

op(A[i])X[i] = B[i]

where A[i] is a matrix which has been LU factorized with pivoting, X[i] and B[i] are n× nrhsmatrices.
Also, for matrix A

op(A[i]) =

A[i] if trans == CUBLAS_OP_N

AT [i] if trans == CUBLAS_OP_T

AH [i] if trans == CUBLAS_OP_C

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

cublas<t>getrsBatched supports non-pivot LU factorization if devIpiv is NULL.

cublas<t>getrsBatched supports arbitrary dimension.

cublas<t>getrsBatched only supports compute capability 2.0 or above.

148 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows and columns of Aarray[i].

nrhs input number of columns of Barray[i].

Aarray de-
vice

input array of pointers to <type> array, with each array of dim. n x n with
lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store each matrix
Aarray[i].

de-
vIpiv

de-
vice

input array of size n x batchSize that contains the pivoting sequence of
each factorization of Aarray[i] stored in a linear fashion. If devIpiv
is NULL, pivoting for all Aarray[i] is ignored.

Barray de-
vice

in-
put/output

array of pointers to <type> array, with each array of dim. n x nrhswith
ldb>=max(1,n). Matrices Barray[i] should not overlap; otherwise,
undefined behavior is expected.

ldb input leading dimension of two-dimensional array used to store each solution
matrix Barray[i].

info host output If info=0, the execution is successful.
If info = -j, the j-th parameter had an illegal value.

batch-
Size

input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or nrhs < 0 or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ if lda < max(1, n) or
▶ ldb < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrs, dgeqrs, cgeqrs, zgeqrs

4.8. BLAS-like Extension 149

http://www.netlib.no/netlib/lapack/single/sgetrs.f
http://www.netlib.no/netlib/lapack/double/dgetrs.f
http://www.netlib.no/netlib/lapack/complex/cgetrs.f
http://www.netlib.no/netlib/lapack/complex16/zgetrs.f

cuBLAS, Release 12.6

4.8.5. cublas<t>getriBatched()

cublasStatus_t cublasSgetriBatched(cublasHandle_t handle,
int n,
const float *const Aarray[],
int lda,
int *PivotArray,
float *const Carray[],
int ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasDgetriBatched(cublasHandle_t handle,
int n,
const double *const Aarray[],
int lda,
int *PivotArray,
double *const Carray[],
int ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasCgetriBatched(cublasHandle_t handle,
int n,
const cuComplex *const Aarray[],
int lda,
int *PivotArray,
cuComplex *const Carray[],
int ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasZgetriBatched(cublasHandle_t handle,
int n,
const cuDoubleComplex *const Aarray[],
int lda,
int *PivotArray,
cuDoubleComplex *const Carray[],
int ldc,
int *infoArray,
int batchSize);

Aarray and Carray are arrays of pointers tomatrices stored in column-major format with dimensions
n*n and leading dimension lda and ldc respectively.

This function performs the inversion of matrices A[i] for i = 0, …, batchSize-1.

Prior to calling cublas<t>getriBatched, the matrix A[i] must be factorized first using the routine
cublas<t>getrfBatched. After the call of cublas<t>getrfBatched, the matrix pointing by Aarray[i]
will contain the LU factors of thematrix A[i] and the vector pointing by (PivotArray+i)will contain
the pivoting sequence.

Following the LU factorization, cublas<t>getriBatched uses forward and backward triangular solvers
to complete inversion of matrices A[i] for i = 0, …, batchSize-1. The inversion is out-of-place, so
memory space of Carray[i] cannot overlap memory space of Array[i].

Typically all parameters in cublas<t>getrfBatched would be passed into cublas<t>getriBatched. For
example,

150 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

∕∕ step 1: perform in-place LU decomposition, P*A = L*U.
∕∕ Aarray[i] is n*n matrix A[i]

cublasDgetrfBatched(handle, n, Aarray, lda, PivotArray, infoArray, batchSize);
∕∕ check infoArray[i] to see if factorization of A[i] is successful or not.
∕∕ Array[i] contains LU factorization of A[i]

∕∕ step 2: perform out-of-place inversion, Carray[i] = inv(A[i])
cublasDgetriBatched(handle, n, Aarray, lda, PivotArray, Carray, ldc, infoArray,�

↪→batchSize);
∕∕ check infoArray[i] to see if inversion of A[i] is successful or not.

The user can check singularity from either cublas<t>getrfBatched or cublas<t>getriBatched.

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

If cublas<t>getrfBatched is performed by non-pivoting, PivotArray of cublas<t>getriBatched
should be NULL.

cublas<t>getriBatched supports arbitrary dimension.

cublas<t>getriBatched only supports compute capability 2.0 or above.

Param. Mem-
ory

In/out Meaning

handle in-
put

handle to the cuBLAS library context.

n in-
put

number of rows and columns of Aarray[i].

Aarray de-
vice

in-
put

array of pointers to <type> array, with each array of dimension n*n with
lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store each matrix
Aarray[i].

Piv-
otArray

de-
vice

out-
put

array of size n*batchSize that contains the pivoting sequence of each
factorization of Aarray[i] stored in a linear fashion. If PivotArray is
NULL, pivoting is disabled.

Carray de-
vice

out-
put

array of pointers to <type> array, with each array of dimension n*n with
ldc>=max(1,n). Matrices Carray[i] should not overlap; otherwise, un-
defined behavior is expected.

ldc in-
put

leading dimension of two-dimensional array used to store each matrix
Carray[i].

infoAr-
ray

de-
vice

out-
put

array of size batchSize that info(=infoArray[i]) contains the information
of inversion of A[i].
If info=0, the execution is successful.
If info = k, U(k,k) is 0. The U is exactly singular and the inversion failed.

batch-
Size

in-
put

number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

4.8. BLAS-like Extension 151

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or lda < 0 or ldc < 0 or batchSize

< 0 or
▶ lda < n or ldc < n

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.8.6. cublas<t>matinvBatched()

cublasStatus_t cublasSmatinvBatched(cublasHandle_t handle,
int n,
const float *const A[],
int lda,
float *const Ainv[],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasDmatinvBatched(cublasHandle_t handle,
int n,
const double *const A[],
int lda,
double *const Ainv[],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasCmatinvBatched(cublasHandle_t handle,
int n,
const cuComplex *const A[],
int lda,
cuComplex *const Ainv[],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasZmatinvBatched(cublasHandle_t handle,
int n,
const cuDoubleComplex *const A[],
int lda,
cuDoubleComplex *const Ainv[],
int lda_inv,
int *info,
int batchSize);

A and Ainv are arrays of pointers to matrices stored in column-major format with dimensions n*n and
leading dimension lda and lda_inv respectively.

This function performs the inversion of matrices A[i] for i = 0, …, batchSize-1.

152 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

This function is a short cut of cublas<t>getrfBatched plus cublas<t>getriBatched. However it
doesn’t work if n is greater than 32. If not, the user has to go through cublas<t>getrfBatched and
cublas<t>getriBatched.

If the matrix A[i] is singular, then info[i] reports singularity, the same as cublas<t>getrfBatched.

Param. Mem-
ory

In/out Meaning

handle in-
put

handle to the cuBLAS library context.

n in-
put

number of rows and columns of A[i].

A de-
vice

in-
put

array of pointers to <type> array, with each array of dimension n*n with
lda>=max(1,n).

lda in-
put

leading dimension of two-dimensional array used to store each matrix
A[i].

Ainv de-
vice

out-
put

array of pointers to <type> array, with each array of dimension n*n with
lda_inv>=max(1,n). Matrices Ainv[i] should not overlap; otherwise,
undefined behavior is expected.

lda_inv in-
put

leading dimension of two-dimensional array used to store each matrix
Ainv[i].

info de-
vice

out-
put

array of size batchSize that info[i] contains the information of inversion
of A[i].
If info[i]=0, the execution is successful.
If info[i]=k, U(k,k) is 0. The U is exactly singular and the inversion failed.

batch-
Size

in-
put

number of pointers contained in A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or lda < 0 or lda_inv < 0 or batch-

Size < 0 or
▶ if lda < n or lda_inv < n or
▶ n > 32

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

4.8. BLAS-like Extension 153

cuBLAS, Release 12.6

4.8.7. cublas<t>geqrfBatched()

cublasStatus_t cublasSgeqrfBatched(cublasHandle_t handle,
int m,
int n,
float *const Aarray[],
int lda,
float *const TauArray[],
int *info,
int batchSize);

cublasStatus_t cublasDgeqrfBatched(cublasHandle_t handle,
int m,
int n,
double *const Aarray[],
int lda,
double *const TauArray[],
int *info,
int batchSize);

cublasStatus_t cublasCgeqrfBatched(cublasHandle_t handle,
int m,
int n,
cuComplex *const Aarray[],
int lda,
cuComplex *const TauArray[],
int *info,
int batchSize);

cublasStatus_t cublasZgeqrfBatched(cublasHandle_t handle,
int m,
int n,
cuDoubleComplex *const Aarray[],
int lda,
cuDoubleComplex *const TauArray[],
int *info,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with dimensions m x n and
leading dimension lda. TauArray is an array of pointers to vectors of dimension of at least max (1,
min(m, n).

This function performs the QR factorization of each Aarray[i] for i = 0, ...,batchSize-1 using
Householder reflections. Each matrix Q[i] is represented as a product of elementary reflectors and
is stored in the lower part of each Aarray[i] as follows :

Q[j] = H[j][1] H[j][2] . . . H[j](k), where k = min(m,n).

Each H[j][i] has the form

H[j][i] = I - tau[j] * v * v'

where tau[j] is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is
stored on exit in Aarray[j][i+1:m,i], and tau in TauArray[j][i].

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

154 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

cublas<t>geqrfBatched supports arbitrary dimension.

cublas<t>geqrfBatched only supports compute capability 2.0 or above.

Param. Mem-
ory

In/out Meaning

handle in-
put

handle to the cuBLAS library context.

m in-
put

number of rows Aarray[i].

n in-
put

number of columns of Aarray[i].

Aarray de-
vice

in-
put

array of pointers to <type> array, with each array of dim. m x n with
lda>=max(1,m).

lda in-
put

leading dimension of two-dimensional array used to store each matrix
Aarray[i].

TauAr-
ray

de-
vice

out-
put

array of pointers to <type> vector, with each vector of dim. max(1,min(m,
n)).

info host out-
put

If info=0, the parameters passed to the function are valid
If info<0, the parameter in postion -info is invalid

batch-
Size

in-
put

number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or batchSize < 0 or
▶ lda < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrf, dgeqrf, cgeqrf, zgeqrf

4.8. BLAS-like Extension 155

http://www.netlib.no/netlib/lapack/single/sgeqrf.f
http://www.netlib.no/netlib/lapack/double/dgeqrf.f
http://www.netlib.no/netlib/lapack/complex/cgeqrf.f
http://www.netlib.no/netlib/lapack/complex16/zgeqrf.f

cuBLAS, Release 12.6

4.8.8. cublas<t>gelsBatched()

cublasStatus_t cublasSgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
float *const Aarray[],
int lda,
float *const Carray[],
int ldc,
int *info,
int *devInfoArray,
int batchSize);

cublasStatus_t cublasDgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
double *const Aarray[],
int lda,
double *const Carray[],
int ldc,
int *info,
int *devInfoArray,
int batchSize);

cublasStatus_t cublasCgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
cuComplex *const Aarray[],
int lda,
cuComplex *const Carray[],
int ldc,
int *info,
int *devInfoArray,
int batchSize);

cublasStatus_t cublasZgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
cuDoubleComplex *const Aarray[],
int lda,
cuDoubleComplex *const Carray[],
int ldc,
int *info,
int *devInfoArray,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format. Carray is an array of point-
ers to matrices stored in column-major format.

This function find the least squares solution of a batch of overdetermined systems: it solves the least

156 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

squares problem described as follows :

minimize || Carray[i] - Aarray[i]*Xarray[i] || , with i = 0, ...,batchSize-1

On exit, each Aarray[i] is overwritten with their QR factorization and each Carray[i] is overwritten
with the least square solution

cublas<t>gelsBatched supports only the non-transpose operation and only solves over-determined
systems (m >= n).

cublas<t>gelsBatched only supports compute capability 2.0 or above.

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

4.8. BLAS-like Extension 157

cuBLAS, Release 12.6

Param. Mem-
ory

In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(Aarray[i]) that is non- or (conj.) transpose. Only non-
transpose operation is currently supported.

m input number of rows of each Aarray[i] and Carray[i] if trans ==
CUBLAS_OP_N, numbers of columns of each Aarray[i] otherwise
(not supported currently).

n input number of columns of each Aarray[i] if trans == CUBLAS_OP_N,
and number of rows of each Aarray[i] and Carray[i] otherwise
(not supported currently).

nrhs input number of columns of each Carray[i].

Aarray de-
vice

in-
put/output

array of pointers to <type> array, with each array of dim. m x n
with lda>=max(1,m) if trans == CUBLAS_OP_N, and n x m
with lda>=max(1,n) otherwise (not supported currently). Matrices
Aarray[i] should not overlap; otherwise, undefined behavior is ex-
pected.

lda input leading dimension of two-dimensional array used to store eachmatrix
Aarray[i].

Carray de-
vice

in-
put/output

array of pointers to <type> array, with each array of dim. m x nrhs
with ldc>=max(1,m) if trans == CUBLAS_OP_N, and n x nrhs
with lda>=max(1,n) otherwise (not supported currently). Matrices
Carray[i] should not overlap; otherwise, undefined behavior is ex-
pected.

ldc input leading dimension of two-dimensional array used to store eachmatrix
Carray[i].

info host output If info=0, the parameters passed to the function are valid
If info<0, the parameter in position -info is invalid

devIn-
foArray

de-
vice

output optional array of integers of dimension batchsize.
If non-null, every element devInfoArray[i] contain a value V with the
following meaning:
V = 0 : the i-th problem was sucessfully solved
V > 0 : the V-th diagonal element of the Aarray[i] is zero. Aarray[i]
does not have full rank.

batch-
Size

input number of pointers contained in Aarray and Carray

The possible error values returned by this function and their meanings are listed below.

158 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or nrhs < 0 or batchSize

< 0 or
▶ lda < max(1, m) or ldc < max(1, m)

CUBLAS_STATUS_NOT_SUPPORTED the parameters m <n or trans is different from
non-transpose.

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgels, dgels, cgels, zgels

4.8.9. cublas<t>tpttr()

cublasStatus_t cublasStpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *AP,
float *A,
int lda);

cublasStatus_t cublasDtpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const double *AP,
double *A,
int lda);

cublasStatus_t cublasCtpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *AP,
cuComplex *A,
int lda);

cublasStatus_t cublasZtpttr (cublasHandle_t handle,
cublasFillMode_t uplo
int n,
const cuDoubleComplex *AP,
cuDoubleComplex *A,
int lda);

This function performs the conversion from the triangular packed format to the triangular format

If uplo == CUBLAS_FILL_MODE_LOWER then the elements of AP are copied into the lower tri-
angular part of the triangular matrix A and the upper part of A is left untouched. If uplo ==

4.8. BLAS-like Extension 159

http://www.netlib.no/netlib/lapack/single/sgels.f
http://www.netlib.no/netlib/lapack/double/dgels.f
http://www.netlib.no/netlib/lapack/complex/cgels.f
http://www.netlib.no/netlib/lapack/complex16/zgels.f

cuBLAS, Release 12.6

CUBLAS_FILL_MODE_UPPER then the elements of AP are copied into the upper triangular part of the
triangular matrix A and the lower part of A is left untouched.

Param. Mem-
ory

In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

uplo in-
put

indicates if matrix AP contains lower or upper part of matrix A.

n in-
put

number of rows and columns of matrix A.

AP device in-
put

<type> array with A stored in packed format.

A device out-
put

<type> array of dimensions lda x n , with lda>=max(1,n). The opposite
side of A is left untouched.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpttr, dtpttr, ctpttr, ztpttr

4.8.10. cublas<t>trttp()

cublasStatus_t cublasStrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
float *AP);

cublasStatus_t cublasDtrttp (cublasHandle_t handle,
(continues on next page)

160 Chapter 4. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/d7/d70/stpttr_8f.html
http://www.netlib.org/lapack/explore-html/df/d63/dtpttr_8f.html
http://www.netlib.org/lapack/explore-html/de/d13/ctpttr_8f.html
http://www.netlib.org/lapack/explore-html/d6/dbc/ztpttr_8f.html

cuBLAS, Release 12.6

(continued from previous page)

cublasFillMode_t uplo,
int n,
const double *A,
int lda,
double *AP);

cublasStatus_t cublasCtrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
cuComplex *AP);

cublasStatus_t cublasZtrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
cuDoubleComplex *AP);

This function performs the conversion from the triangular format to the triangular packed format

If uplo == CUBLAS_FILL_MODE_LOWER then the lower triangular part of the triangular matrix A is
copied into the array AP. If uplo == CUBLAS_FILL_MODE_UPPER then then the upper triangular part
of the triangular matrix A is copied into the array AP.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates which matrix A lower or upper part is referenced.

n input number of rows and columns of matrix A.

A device input <type> array of dimensions lda x n , with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store matrix A.

AP device output <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

4.8. BLAS-like Extension 161

cuBLAS, Release 12.6

strttp, dtrttp, ctrttp, ztrttp

4.8.11. cublas<t>gemmEx()

cublasStatus_t cublasSgemmEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float *alpha,
const void *A,
cudaDataType_t Atype,
int lda,
const void *B,
cudaDataType_t Btype,
int ldb,
const float *beta,
void *C,
cudaDataType_t Ctype,
int ldc)

cublasStatus_t cublasCgemmEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const cuComplex *alpha,
const void *A,
cudaDataType_t Atype,
int lda,
const void *B,
cudaDataType_t Btype,
int ldb,
const cuComplex *beta,
void *C,
cudaDataType_t Ctype,
int ldc)

This function supports the 64-bit Integer Interface.

This function is an extension of cublas<t>gemm. In this function the input matrices and output ma-
trices can have a lower precision but the computation is still done in the type <t>. For example, in the
type float for cublasSgemmEx() and in the type cuComplex for cublasCgemmEx().

C = αop(A)op(B) + βC

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× k , op(B) k × n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

162 Chapter 4. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/d9/def/strttp_8f.html
http://www.netlib.org/lapack/explore-html/d0/daf/dtrttp_8f.html
http://www.netlib.org/lapack/explore-html/d7/d56/ctrttp_8f.html
http://www.netlib.org/lapack/explore-html/da/dc2/ztrttp_8f.html

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLAS library context.

transa in-
put

operation op(A) that is non- or (conj.) transpose.

transb in-
put

operation op(B) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A) and C.

n in-
put

number of columns of matrix op(B) and C.

k in-
put

number of columns of op(A) and rows of op(B).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimensions lda x kwith lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

Atype in-
put

enumerant specifying the datatype of matrix A.

lda in-
put

leading dimension of two-dimensional array used to store the matrix A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,k) if transb ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

Btype in-
put

enumerant specifying the datatype of matrix B.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

<type> scalar used for multiplication. If beta==0, C does not have to be
a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

Ctype in-
put

enumerant specifying the datatype of matrix C.

ldc in-
put

leading dimension of a two-dimensional array used to store the matrix C.

The matrix types combinations supported for cublasSgemmEx() are listed below:

4.8. BLAS-like Extension 163

cuBLAS, Release 12.6

C A/B

CUDA_R_16BF CUDA_R_16BF

CUDA_R_16F CUDA_R_16F

CUDA_R_32F CUDA_R_8I

CUDA_R_16BF

CUDA_R_16F

CUDA_R_32F

The matrix types combinations supported for cublasCgemmEx() are listed below :

C A/B

CUDA_C_32F CUDA_C_8I

CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH cublasCgemmEx() is only supported for GPU with
architecture capabilities equal or greater than
5.0

CUBLAS_STATUS_NOT_SUPPORTED the combination of the parameters
Atype,Btype and Ctype is not supported

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or k < 0 or
▶ if transa or transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ ldc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

164 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

sgemm

For more information about the numerical behavior of some GEMM algorithms, refer to the GEMM
Algorithms Numerical Behavior section.

4.8.12. cublasGemmEx()

cublasStatus_t cublasGemmEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *A,
cudaDataType_t Atype,
int lda,
const void *B,
cudaDataType_t Btype,
int ldb,
const void *beta,
void *C,
cudaDataType_t Ctype,
int ldc,
cublasComputeType_t computeType,
cublasGemmAlgo_t algo)

#if defined(__cplusplus)
cublasStatus_t cublasGemmEx(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *A,
cudaDataType Atype,
int lda,
const void *B,
cudaDataType Btype,
int ldb,
const void *beta,
void *C,
cudaDataType Ctype,
int ldc,
cudaDataType computeType,
cublasGemmAlgo_t algo)

#endif

This function supports the 64-bit Integer Interface.

This function is an extension of cublas<t>gemm that allows the user to individually specify the data
types for each of the A, B and C matrices, the precision of computation and the GEMM algorithm to
be run. Supported combinations of arguments are listed further down in this section.

Note: The second variant of cublasGemmEx() function is provided for backward compatibility with

4.8. BLAS-like Extension 165

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.6

C++ applications code, where the computeType parameter is of cudaDataType instead of cublas-
ComputeType_t. C applications would still compile with the updated function signature.

This function is only supported on devices with compute capability 5.0 or later.

C = αop(A)op(B) + βC

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× k , op(B) k × n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

166 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

Handle to the cuBLAS library context.

transa in-
put

Operation op(A) that is non- or (conj.) transpose.

transb in-
put

Operation op(B) that is non- or (conj.) transpose.

m in-
put

Number of rows of matrix op(A) and C.

n in-
put

Number of columns of matrix op(B) and C.

k in-
put

Number of columns of op(A) and rows of op(B).

alpha host or
device

in-
put

Scaling factor for A*B of the type that corresponds to the compute-
Type and Ctype, see the table below for details.

A device in-
put

<type> array of dimensions lda x kwith lda>=max(1,m) if transa
== CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of matrix A.

lda in-
put

Leading dimension of two-dimensional array used to store thematrix
A.

B device in-
put

<type> array of dimension ldb x n with ldb>=max(1,k) if transb
== CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

Btype in-
put

Enumerant specifying the datatype of matrix B.

ldb in-
put

Leading dimension of two-dimensional array used to store matrix B.

beta host or
device

in-
put

Scaling factor for C of the type that corresponds to the computeType
and Ctype, see the table below for details. If beta==0, C does not
have to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

Ctype in-
put

Enumerant specifying the datatype of matrix C.

ldc in-
put

Leading dimension of a two-dimensional array used to store the ma-
trix C.

com-
puteType

in-
put

Enumerant specifying the computation type.

algo in-
put

Enumerant specifying the algorithm. See cublasGemmAlgo_t.

cublasGemmEx() supports the following Compute Type, Scale Type, Atype/Btype, and Ctype:

4.8. BLAS-like Extension 167

cuBLAS, Release 12.6

Compute Type Scale Type (alpha and
beta)

Atype/BtypeCtype

CUBLAS_COMPUTE_16F or
CUBLAS_COMPUTE_16F_PEDANTIC

CUDA_R_16F CUDA_R_16F CUDA_R_16F

CUBLAS_COMPUTE_32I or
CUBLAS_COMPUTE_32I_PEDANTIC

CUDA_R_32I CUDA_R_8I CUDA_R_32I

CUBLAS_COMPUTE_32F or
CUBLAS_COMPUTE_32F_PEDANTIC

CUDA_R_32F CUDA_R_16BFCUDA_R_16BF

CUDA_R_16F CUDA_R_16F

CUDA_R_8I CUDA_R_32F

CUDA_R_16BFCUDA_R_32F

CUDA_R_16F CUDA_R_32F

CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_32F_FAST_16F or
CUBLAS_COMPUTE_32F_FAST_16BF or
CUBLAS_COMPUTE_32F_FAST_TF32

CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_64F or
CUBLAS_COMPUTE_64F_PEDANTIC

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_64F CUDA_C_64F CUDA_C_64F

Note: CUBLAS_COMPUTE_32I and CUBLAS_COMPUTE_32I_PEDANTIC compute types are only sup-
ported with A, B being 4-byte aligned and lda, ldb being multiples of 4. For better performance, it is
also recommended that IMMA kernels requirements for a regular data ordering listed here are met.

The possible error values returned by this function and their meanings are listed in the following table.

168 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH cublasGemmEx() is only supported for GPU with
architecture capabilities equal or greater than
5.0.

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters
Atype,Btype and Ctype or the algorithm,algois
not supported.

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or k < 0 or
▶ if transa or transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ Atype or Btype or Ctype or algo is not

supported

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

Starting with release 11.2, using the typed functions instead of the extension functions (cublas**Ex())
helps in reducing the binary size when linking to static cuBLAS Library.

Also refer to: sgemm.

For more information about the numerical behavior of some GEMM algorithms, refer to the GEMM
Algorithms Numerical Behavior section.

4.8.13. cublasGemmBatchedEx()

cublasStatus_t cublasGemmBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *const Aarray[],
cudaDataType_t Atype,
int lda,
const void *const Barray[],
cudaDataType_t Btype,
int ldb,
const void *beta,

(continues on next page)

4.8. BLAS-like Extension 169

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.6

(continued from previous page)

void *const Carray[],
cudaDataType_t Ctype,
int ldc,
int batchCount,
cublasComputeType_t computeType,
cublasGemmAlgo_t algo)

#if defined(__cplusplus)
cublasStatus_t cublasGemmBatchedEx(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *const Aarray[],
cudaDataType Atype,
int lda,
const void *const Barray[],
cudaDataType Btype,
int ldb,
const void *beta,
void *const Carray[],
cudaDataType Ctype,
int ldc,
int batchCount,
cudaDataType computeType,
cublasGemmAlgo_t algo)

#endif

This function supports the 64-bit Integer Interface.

This function is an extension of cublas<t>gemmBatched that performs the matrix-matrix multipli-
cation of a batch of matrices and allows the user to individually specify the data types for each of
the A, B and C matrix arrays, the precision of computation and the GEMM algorithm to be run. Like
cublas<t>gemmBatched, the batch is considered to be “uniform”, i.e. all instances have the same di-
mensions (m, n, k), leading dimensions (lda, ldb, ldc) and transpositions (transa, transb) for their re-
spective A, B and C matrices. The address of the input matrices and the output matrix of each in-
stance of the batch are read from arrays of pointers passed to the function by the caller. Supported
combinations of arguments are listed further down in this section.

Note: The second variant of cublasGemmBatchedEx() function is provided for backward compatibil-
ity with C++ applications code, where the computeType parameter is of cudaDataType instead of
cublasComputeType_t. C applications would still compile with the updated function signature.

C[i] = αop(A[i])op(B[i]) + βC[i], for i ∈ [0, batchCount− 1]

where α and β are scalars, and A , B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m× k , op(B[i]) k × n and C[i] m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B[i]) is defined similarly for matrix B[i] .

170 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Note: C[i]matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm in dif-
ferent CUDA streams, rather than use this API.

4.8. BLAS-like Extension 171

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

Handle to the cuBLAS library context.

transa in-
put

Operation op(A[i]) that is non- or (conj.) transpose.

transb in-
put

Operation op(B[i]) that is non- or (conj.) transpose.

m in-
put

Number of rows of matrix op(A[i]) and C[i].

n in-
put

Number of columns of matrix op(B[i]) and C[i].

k in-
put

Number of columns of op(A[i]) and rows of op(B[i]).

alpha host or
device

in-
put

Scaling factor for A*B of the type that corresponds to the compute-
Type and Ctype, see the table below for details.

Aarray device in-
put

Array of pointers to <Atype> array, with each array of dim. lda x k
with lda>=max(1,m) if transa == CUBLAS_OP_N and lda x mwith
lda>=max(1,k) otherwise.
All pointers must meet certain alignment criteria. Please see below
for details.

Atype in-
put

Enumerant specifying the datatype of Aarray.

lda in-
put

Leading dimension of two-dimensional array used to store thematrix
A[i].

Barray device in-
put

Array of pointers to <Btype> array, with each array of dim. ldb x n
with ldb>=max(1,k) if transb == CUBLAS_OP_N and ldb x kwith
ldb>=max(1,n) otherwise.
All pointers must meet certain alignment criteria. Please see below
for details.

Btype in-
put

Enumerant specifying the datatype of Barray.

ldb in-
put

Leading dimension of two-dimensional array used to store matrix
B[i].

beta host or
device

in-
put

Scaling factor for C of the type that corresponds to the computeType
and Ctype, see the table below for details. If beta==0, C[i] does not
have to be a valid input.

Carray device in/out Array of pointers to <Ctype> array. It has dimensions ldc x n with
ldc>=max(1,m). Matrices C[i] should not overlap; otherwise, un-
defined behavior is expected.
All pointers must meet certain alignment criteria. Please see below
for details.

Ctype in-
put

Enumerant specifying the datatype of Carray.

ldc in-
put

Leading dimension of a two-dimensional array used to store eachma-
trix C[i].

batch-
Count

in-
put

Number of pointers contained in Aarray, Barray and Carray.

com-
puteType

in-
put

Enumerant specifying the computation type.

algo in-
put

Enumerant specifying the algorithm. See cublasGemmAlgo_t.

172 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

cublasGemmBatchedEx() supports the following Compute Type, Scale Type, Atype/Btype, and Ctype:

Compute Type Scale Type (alpha and
beta)

Atype/BtypeCtype

CUBLAS_COMPUTE_16F or
CUBLAS_COMPUTE_16F_PEDANTIC

CUDA_R_16F CUDA_R_16F CUDA_R_16F

CUBLAS_COMPUTE_32I or
CUBLAS_COMPUTE_32I_PEDANTIC

CUDA_R_32I CUDA_R_8I CUDA_R_32I

CUBLAS_COMPUTE_32F or
CUBLAS_COMPUTE_32F_PEDANTIC

CUDA_R_32F CUDA_R_16BFCUDA_R_16BF

CUDA_R_16F CUDA_R_16F

CUDA_R_8I CUDA_R_32F

CUDA_R_16BFCUDA_R_32F

CUDA_R_16F CUDA_R_32F

CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_32F_FAST_16F or
CUBLAS_COMPUTE_32F_FAST_16BF or
CUBLAS_COMPUTE_32F_FAST_TF32

CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_64F or
CUBLAS_COMPUTE_64F_PEDANTIC

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_64F CUDA_C_64F CUDA_C_64F

If Atype is CUDA_R_16F or CUDA_R_16BF, or computeType is any of the FAST options, or when math
mode or algo enable fast math modes, pointers (not the pointer arrays) placed in the GPU memory
must be properly aligned to avoid misaligned memory access errors. Ideally all pointers are aligned to
at least 16 Bytes. Otherwise it is recommended that they meet the following rule:

▶ if k%8==0 then ensure intptr_t(ptr) % 16 == 0,

▶ if k%2==0 then ensure intptr_t(ptr) % 4 == 0.

Note: Compute types CUBLAS_COMPUTE_32I and CUBLAS_COMPUTE_32I_PEDANTIC are only sup-
ported with all pointers A[i], B[i] being 4-byte aligned and lda, ldb being multiples of 4. For a better
performance, it is also recommended that IMMA kernels requirements for the regular data ordering
listed here are met.

The possible error values returned by this function and their meanings are listed below.

4.8. BLAS-like Extension 173

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH cublasGemmBatchedEx() is only supported for
GPU with architecture capabilities equal to or
greater than 5.0.

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters
Atype,Btype and Ctype or the algorithm,algois
not supported.

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or k < 0 or
▶ if transa or transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ Atype or Btype or Ctype or algo or com-

puteType is not supported

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

Also refer to: sgemm.

4.8.14. cublasGemmStridedBatchedEx()

cublasStatus_t cublasGemmStridedBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *A,
cudaDataType_t Atype,
int lda,
long long int strideA,
const void *B,
cudaDataType_t Btype,
int ldb,
long long int strideB,
const void *beta,
void *C,
cudaDataType_t Ctype,
int ldc,

(continues on next page)

174 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.6

(continued from previous page)

long long int strideC,
int batchCount,
cublasComputeType_t computeType,
cublasGemmAlgo_t algo)

#if defined(__cplusplus)
cublasStatus_t cublasGemmStridedBatchedEx(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const void *alpha,
const void *A,
cudaDataType Atype,
int lda,
long long int strideA,
const void *B,
cudaDataType Btype,
int ldb,
long long int strideB,
const void *beta,
void *C,
cudaDataType Ctype,
int ldc,
long long int strideC,
int batchCount,
cudaDataType computeType,
cublasGemmAlgo_t algo)

#endif

This function supports the 64-bit Integer Interface.

This function is an extension of cublas<t>gemmStridedBatched that performs the matrix-matrix mul-
tiplication of a batch of matrices and allows the user to individually specify the data types for each
of the A, B and C matrices, the precision of computation and the GEMM algorithm to be run. Like
cublas<t>gemmStridedBatched, the batch is considered to be “uniform”, i.e. all instances have the
same dimensions (m, n, k), leading dimensions (lda, ldb, ldc) and transpositions (transa, transb) for
their respective A, B and C matrices. Input matrices A, B and output matrix C for each instance of the
batch are located at fixed offsets in number of elements from their locations in the previous instance.
Pointers to A, B and Cmatrices for the first instance are passed to the function by the user along with
the offsets in number of elements - strideA, strideB and strideC that determine the locations of input
and output matrices in future instances.

Note: The second variant of cublasGemmStridedBatchedEx() function is provided for backward com-
patibility with C++ applications code, where the computeType parameter is of cudaDataType_t instead
of cublasComputeType_t. C applications would still compile with the updated function signature.

C + i ∗ strideC = αop(A+ i ∗ strideA)op(B+ i ∗ strideB) + β(C + i ∗ strideC), for i ∈ [0, batchCount− 1]

where α and β are scalars, and A , B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m× k , op(B[i]) k × n and C[i] m× n , respectively. Also, for matrix A

4.8. BLAS-like Extension 175

cuBLAS, Release 12.6

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B[i]) is defined similarly for matrix B[i] .

Note: C[i]matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, we use A[i], B[i], C[i] as notation for A, B and C matrices in the
ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, strideB, strideC away from A[i-1], B[i-1], C[i-1]. The unit for the offset is
number of elements and must not be zero .

176 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Memory In/outMeaning

handle in-
put

Handle to the cuBLAS library context.

transa in-
put

Operation op(A[i]) that is non- or (conj.) transpose.

transb in-
put

Operation op(B[i]) that is non- or (conj.) transpose.

m in-
put

Number of rows of matrix op(A[i]) and C[i].

n in-
put

Number of columns of matrix op(B[i]) and C[i].

k in-
put

Number of columns of op(A[i]) and rows of op(B[i]).

alpha host or
device

in-
put

Scaling factor for A*B of the type that corresponds to the compute-
Type and Ctype, see the table below for details.

A device in-
put

Pointer to <Atype>matrix, A, corresponds to the first instance of the
batch, with dimensions lda x kwith lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of A.

lda in-
put

Leading dimension of two-dimensional array used to store thematrix
A[i].

strideA in-
put

Value of type long long int that gives the offset in number of elements
between A[i] and A[i+1].

B device in-
put

Pointer to <Btype>matrix, B, corresponds to the first instance of the
batch, with dimensions ldb x nwith ldb>=max(1,k) if transb ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

Btype in-
put

Enumerant specifying the datatype of B.

ldb in-
put

Leading dimension of two-dimensional array used to store matrix
B[i].

strideB in-
put

Value of type long long int that gives the offset in number of elements
between B[i] and B[i+1].

beta host or
device

in-
put

Scaling factor for C of the type that corresponds to the computeType
and Ctype, see the table below for details. If beta==0, C[i] does not
have to be a valid input.

C device in/out Pointer to <Ctype>matrix, C, corresponds to the first instance of the
batch, with dimensions ldc x n with ldc>=max(1,m). Matrices
C[i] should not overlap; otherwise, undefined behavior is expected.

Ctype in-
put

Enumerant specifying the datatype of C.

ldc in-
put

Leading dimension of a two-dimensional array used to store eachma-
trix C[i].

strideC in-
put

Value of type long long int that gives the offset in number of elements
between C[i] and C[i+1].

batch-
Count

in-
put

Number of GEMMs to perform in the batch.

com-
puteType

in-
put

Enumerant specifying the computation type.

algo in-
put

Enumerant specifying the algorithm. See cublasGemmAlgo_t.

4.8. BLAS-like Extension 177

cuBLAS, Release 12.6

cublasGemmStridedBatchedEx() supports the following Compute Type, Scale Type, Atype/Btype, and
Ctype:

Compute Type Scale Type (alpha and
beta)

Atype/BtypeCtype

CUBLAS_COMPUTE_16F or
CUBLAS_COMPUTE_16F_PEDANTIC

CUDA_R_16F CUDA_R_16F CUDA_R_16F

CUBLAS_COMPUTE_32I or
CUBLAS_COMPUTE_32I_PEDANTIC

CUDA_R_32I CUDA_R_8I CUDA_R_32I

CUBLAS_COMPUTE_32F or
CUBLAS_COMPUTE_32F_PEDANTIC

CUDA_R_32F CUDA_R_16BFCUDA_R_16BF

CUDA_R_16F CUDA_R_16F

CUDA_R_8I CUDA_R_32F

CUDA_R_16BFCUDA_R_32F

CUDA_R_16F CUDA_R_32F

CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_32F_FAST_16F or
CUBLAS_COMPUTE_32F_FAST_16BF or
CUBLAS_COMPUTE_32F_FAST_TF32

CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUBLAS_COMPUTE_64F or
CUBLAS_COMPUTE_64F_PEDANTIC

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_64F CUDA_C_64F CUDA_C_64F

Note: Compute types CUBLAS_COMPUTE_32I and CUBLAS_COMPUTE_32I_PEDANTIC are only sup-
ported with all pointers A[i], B[i] being 4-byte aligned and lda, ldb being multiples of 4. For a better
performance, it is also recommended that IMMA kernels requirements for the regular data ordering
listed here are met.

The possible error values returned by this function and their meanings are listed below.

178 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH cublasGemmBatchedEx() is only supported for
GPU with architecture capabilities equal or
greater than 5.0.

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters
Atype,Btype and Ctype or the algorithm,algois
not supported.

CUBLAS_STATUS_INVALID_VALUE
▶ If m < 0 or n < 0 or k < 0 or
▶ if transa or transb != CUBLAS_OP_N,

CUBLAS_OP_C, CUBLAS_OP_T or
▶ if lda < max(1, m) if transa ==

CUBLAS_OP_N and lda < max(1, k) other-
wise or

▶ if ldb < max(1, k) if transb ==
CUBLAS_OP_N and ldb < max(1, n) other-
wise or

▶ if ldc < max(1, m) or
▶ Atype or Btype or Ctype or algo or com-

puteType is not supported

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

Also refer to: sgemm.

4.8.15. cublasGemmGroupedBatchedEx()

cublasStatus_t cublasGemmGroupedBatchedEx(cublasHandle_t handle,
const cublasOperation_t transa_array[],
const cublasOperation_t transb_array[],
const int m_array[],
const int n_array[],
const int k_array[],
const void *alpha_array,
const void *const Aarray[],
cudaDataType_t Atype,
const int lda_array[],
const void *const Barray[],
cudaDataType_t Btype,
const int ldb_array[],
const void *beta_array,
void *const Carray[],
cudaDataType_t Ctype,
const int ldc_array[],
int group_count,
const int group_size[],
cublasComputeType_t computeType)

4.8. BLAS-like Extension 179

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.6

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication on groups of matrices. A given group is con-
sidered to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda,
ldb, ldc) and transpositions (transa, transb) for their respective A, B and C matrices. However, the
dimensions, leading dimensions, transpositions, and scaling factors (alpha, beta) may vary between
groups. The address of the input matrices and the output matrix of each instance of the batch are
read from arrays of pointers passed to the function by the caller. This is functionally equivalent to the
following:

idx = 0;
for i = 0:group_count - 1

for j = 0:group_size[i] - 1
gemmEx(transa_array[i], transb_array[i], m_array[i], n_array[i], k_array[i],

alpha_array[i], Aarray[idx], Atype, lda_array[i], Barray[idx], Btype,
ldb_array[i], beta_array[i], Carray[idx], Ctype, ldc_array[i],
computeType, CUBLAS_GEMM_DEFAULT);

idx += 1;
end

end

where alpha_array and beta_array are arrays of scaling factors, andAarray, Barray andCarray are arrays
of pointers to matrices stored in column-major format. For a given index, idx, that is part of group i,
the dimensions are:

▶ op(Aarray[idx]): m_array[i]× k_array[i]

▶ op(Barray[idx]): k_array[i]× n_array[i]

▶ Carray[idx]: m_array[i]× n_array[i]

Note: This API takes arrays of two different lengths. The arrays of dimensions, leading dimensions,
transpositions, and scaling factors are of length group_count and the arrays ofmatrices are of length
problem_count where problem_count =

∑group_count−1
i=0 group_size[i]

For matrix A[idx] in group i

op(A[idx]) =

A[idx] if transa_array[i] == CUBLAS_OP_N

A[idx]T if transa_array[i] == CUBLAS_OP_T

A[idx]H if transa_array[i] == CUBLAS_OP_C

and op(B[idx]) is defined similarly for matrix B[idx] in group i.

Note: C[idx]matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublasGemmBatchedEx()
in different CUDA streams, rather than use this API.

180 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Param. Mem-
ory

In/outMeaning Array
Length

handle in-
put

handle to the cuBLAS library context.

transa_arrayhost in-
put

array containing the operations, op(A[idx]), that is non- or
(conj.) transpose for each group.

group_count

transb_arrayhost in-
put

array containing the operations, op(B[idx]), that is non- or
(conj.) transpose for each group.

group_count

m_array host in-
put

array containing the number of rows of matrix op(A[idx]) and
C[idx] for each group.

group_count

n_array host in-
put

array containing the number of columns of op(B[idx]) and
C[idx] for each group.

group_count

k_array host in-
put

array containing the number of columns of op(A[idx]) and
rows of op(B[idx]) for each group.

group_count

al-
pha_array

host in-
put

array containing the <type> scalar used for multiplication for
each group.

group_count

Aarray de-
vice

in-
put

array of pointers to <type> array, with each array of
dim. lda[i] x k[i] with lda[i]>=max(1,m[i]) if
transa[i]==CUBLAS_OP_N and lda[i] x m[i] with
lda[i]>=max(1,k[i]) otherwise.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

Atype in-
put

Enumerant specifying the datatype of A.

lda_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix A[idx] for each group.

group_count

Barray de-
vice

in-
put

array of pointers to <type> array, with each array of
dim. ldb[i] x n[i] with ldb[i]>=max(1,k[i]) if
transb[i]==CUBLAS_OP_N and ldb[i] x k[i] with
ldb[i]>=max(1,n[i]) otherwise.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

Btype in-
put

Enumerant specifying the datatype of B.

ldb_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix B[idx] for each group.

group_count

beta_arrayhost in-
put

array containing the <type> scalar used for multiplication for
each group.

group_count

Carray de-
vice

in/outarray of pointers to <type> array. It has dimensions ldc[i] x
n[i] with ldc[i]>=max(1,m[i]). Matrices C[idx] should
not overlap; otherwise, undefined behavior is expected.
All pointers must meet certain alignment criteria. Please see
below for details.

prob-
lem_count

Ctype in-
put

Enumerant specifying the datatype of C.

ldc_array host in-
put

array containing the leading dimensions of two-dimensional ar-
rays used to store each matrix C[idx] for each group.

group_count

group_counthost in-
put

number of groups

group_sizehost in-
put

array containg the number of pointers contained in Aarray, Bar-
ray and Carray for each group.

group_count

com-
pute-
Type

in-
put

Enumerant specifying the computation type.

4.8. BLAS-like Extension 181

cuBLAS, Release 12.6

cublasGemmGroupedBatchedEx() supports the following Compute Type, Scale Type, Atype/Btype, and
Ctype:

Compute Type Scale Type (alpha and
beta)

Atype/BtypeCtype

CUBLAS_COMPUTE_32F CUDA_R_32F CUDA_R_16BFCUDA_R_16BF

CUDA_R_16F CUDA_R_16F

CUDA_R_32F CUDA_R_32F

CUBLAS_COMPUTE_32F_PEDANTIC CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUBLAS_COMPUTE_32F_FAST_TF32 CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUBLAS_COMPUTE_64F or
CUBLAS_COMPUTE_64F_PEDANTIC

CUDA_R_64F CUDA_R_64F CUDA_R_64F

If Atype is CUDA_R_16F or CUDA_R_16BF or if the computeType is any of the FAST options, pointers
(not the pointer arrays) placed in the GPUmemory must be properly aligned to avoid misalignedmem-
ory access errors. Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is required that they
meet the following rule:

▶ if (k * AtypeSize) % 16 == 0 then ensure intptr_t(ptr) % 16 == 0,

▶ if (k * AtypeSize) % 4 == 0 then ensure intptr_t(ptr) % 4 == 0.

The possible error values returned by this function and their meanings are listed below.

182 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
▶ If transa_array, transb_array,

m_array, n_array, k_array, al-
pha_array, lda_array, ldb_array,
beta_array, ldc_array, or group_size
are NULL or

▶ if group_count < 0 or
▶ if m_array[i], n_array[i], k_array[i],

group_size[i] < 0 or
▶ if transa_array[i], transb_array[i]

!= CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

▶ if lda_array[i] < max(1, m_array[i]) if
transa_array[i] == CUBLAS_OP_N and
lda_array[i] <max(1, k_array[i]) oth-
erwise or

▶ if ldb_array[i] < max(1, k_array[i]) if
transb_array[i] == CUBLAS_OP_N and
ldb_array[i] <max(1, n_array[i]) oth-
erwise or

▶ if ldc_array[i] < max(1, m_array[i])

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_NOT_SUPPORTED ▶ the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE

▶ Atype or Btype or Ctype or computeType
is not supported

4.8.16. cublasCsyrkEx()

cublasStatus_t cublasCsyrkEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,
int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int ldc)

4.8. BLAS-like Extension 183

cuBLAS, Release 12.6

This function supports the 64-bit Integer Interface.

This function is an extension of cublasCsyrk() where the input matrix and output matrix can have a
lower precision but the computation is still done in the type cuComplex

This function performs the symmetric rank- k update

C = αop(A)op(A)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than
5.0

Param.Memory In/out Meaning

han-
dle

in-
put

Handle to the cuBLAS library context.

uplo in-
put

Indicates if matrix C lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

Operation op(A) that is non- or transpose.

n in-
put

Number of rows of matrix op(A) and C.

k in-
put

Number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if trans ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of matrix A.

lda in-
put

Leading dimension of two-dimensional array used to store matrix A.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

Ctype in-
put

Enumerant specifying the datatype of matrix C.

ldc in-
put

Leading dimension of two-dimensional array used to store matrix C.

The matrix types combinations supported for cublasCsyrkEx() are listed below:

184 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

A C

CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ Atype or Ctype is not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

4.8.17. cublasCsyrk3mEx()

cublasStatus_t cublasCsyrk3mEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,
int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int ldc)

This function supports the 64-bit Integer Interface.

4.8. BLAS-like Extension 185

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.6

This function is an extension of cublasCsyrk() where the input matrix and output matrix can have a
lower precision but the computation is still done in the type cuComplex. This routine is implemented
using the Gauss complexity reduction algorithm which can lead to an increase in performance up to
25%

This function performs the symmetric rank- k update

C = αop(A)op(A)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than
5.0

Param.Memory In/out Meaning

han-
dle

in-
put

Handle to the cuBLAS library context.

uplo in-
put

Indicates if matrix C lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

Operation op(A) that is non- or transpose.

n in-
put

Number of rows of matrix op(A) and C.

k in-
put

Number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if trans ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of matrix A.

lda in-
put

Leading dimension of two-dimensional array used to store matrix A.

beta host or
device

in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

Ctype in-
put

Enumerant specifying the datatype of matrix C.

ldc in-
put

Leading dimension of two-dimensional array used to store matrix C.

The matrix types combinations supported for cublasCsyrk3mEx() are listed below :

186 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

A C

CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ Atype or Ctype is not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

4.8.18. cublasCherkEx()

cublasStatus_t cublasCherkEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,
int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int ldc)

This function supports the 64-bit Integer Interface.

4.8. BLAS-like Extension 187

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.6

This function is an extension of cublasCherk() where the input matrix and output matrix can have a
lower precision but the computation is still done in the type cuComplex

This function performs the Hermitian rank- k update

C = αop(A)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AH if transa == CUBLAS_OP_C

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than
5.0

Param.Memory In/out Meaning

han-
dle

in-
put

Handle to the cuBLAS library context.

uplo in-
put

Indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

Operation op(A) that is non- or (conj.) transpose.

n in-
put

Number of rows of matrix op(A) and C.

k in-
put

Number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of matrix A.

lda in-
put

Leading dimension of two-dimensional array used to store matrix A.

beta in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

Ctype in-
put

Enumerant specifying the datatype of matrix C.

ldc in-
put

Leading dimension of two-dimensional array used to store matrix C.

The matrix types combinations supported for cublasCherkEx() are listed in the following table:

188 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

A C

CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ Atype or Ctype is not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to:

cherk

4.8.19. cublasCherk3mEx()

cublasStatus_t cublasCherk3mEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,
int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int ldc)

This function supports the 64-bit Integer Interface.

4.8. BLAS-like Extension 189

http://www.netlib.org/blas/cherk.f

cuBLAS, Release 12.6

This function is an extension of cublasCherk() where the input matrix and output matrix can have a
lower precision but the computation is still done in the type cuComplex. This routine is implemented
using the Gauss complexity reduction algorithm which can lead to an increase in performance up to
25%

This function performs the Hermitian rank- k update

C = αop(A)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AH if transa == CUBLAS_OP_C

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than
5.0

Param.Memory In/out Meaning

han-
dle

in-
put

Handle to the cuBLAS library context.

uplo in-
put

Indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

Operation op(A) that is non- or (conj.) transpose.

n in-
put

Number of rows of matrix op(A) and C.

k in-
put

Number of columns of matrix op(A).

al-
pha

host or
device

in-
put

<type> scalar used for multiplication.

A device in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

Atype in-
put

Enumerant specifying the datatype of matrix A.

lda in-
put

Leading dimension of two-dimensional array used to store matrix A.

beta in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C device in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

Ctype in-
put

Enumerant specifying the datatype of matrix C.

ldc in-
put

Leading dimension of two-dimensional array used to store matrix C.

190 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

The matrix types combinations supported for cublasCherk3mEx() are listed in the following table:

A C

CUDA_C_8I CUDA_C_32F

CUDA_C_32F CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
▶ If n < 0 or k < 0 or
▶ if uplo != CUBLAS_FILL_MODE_UPPER,

CUBLAS_FILL_MODE_LOWER or
▶ if trans != CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or
▶ iflda <max(1, n) iftrans == CUBLAS_OP_N

and lda < max(1, k) otherwise or
▶ if ldc < max(1, n) or
▶ Atype or Ctype is not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to:

cherk

4.8.20. cublasNrm2Ex()

cublasStatus_t cublasNrm2Ex(cublasHandle_t handle,
int n,
const void *x,
cudaDataType xType,
int incx,
void *result,
cudaDataType resultType,
cudaDataType executionType)

This function supports the 64-bit Integer Interface.

This function is an API generalization of the routine cublas<t>nrm2 where input data, output data and
compute type can be specified independently.

4.8. BLAS-like Extension 191

http://www.netlib.org/blas/cherk.f

cuBLAS, Release 12.6

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent to√∑n

i=1 (x[j]× x[j]) where j = 1 + (i− 1) ∗ incx in exact arithmetic. Notice that the last equation re-
flects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with n elements.

xType input enumerant specifying the datatype of vector x.

incx input stride between consecutive elements of x.

result host or de-
vice

out-
put

the resulting norm, which is 0.0 if n,incx<=0.

resultType input enumerant specifying the datatype of the result.

execution-
Type

input enumerant specifying the datatype in which the computation
is executed.

The datatypes combinations currently supported for cublasNrm2Ex() are listed below :

x result execution

CUDA_R_16F CUDA_R_16F CUDA_R_32F

CUDA_R_16BF CUDA_R_16BF CUDA_R_32F

CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_C_32F CUDA_R_32F CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_64F CUDA_R_64F CUDA_R_64F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_NOT_SUPPORTED the combination of the parameters xType, re-
sultType and executionType is not supported

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE
▶ If xType or resultType or execution-

Type is not supported or
▶ result == NULL

192 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

For references please refer to:

snrm2, dnrm2, scnrm2, dznrm2

4.8.21. cublasAxpyEx()

cublasStatus_t cublasAxpyEx (cublasHandle_t handle,
int n,
const void *alpha,
cudaDataType alphaType,
const void *x,
cudaDataType xType,
int incx,
void *y,
cudaDataType yType,
int incy,
cudaDataType executiontype);

This function supports the 64-bit Integer Interface.

This function is an API generalization of the routine cublas<t>axpy where input data, output data and
compute type can be specified independently.

This function multiplies the vector x by the scalar α and adds it to the vector y overwriting the latest
vector with the result. Hence, the performed operation is y[j] = α × x[k] + y[j] for i = 1, . . . , n , k =
1+ (i− 1) ∗ incx and j = 1+ (i− 1) ∗ incy . Notice that the last two equations reflect 1-based indexing
used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x and y.

alpha host or de-
vice

input <type> scalar used for multiplication.

alphaType input Enumerant specifying the datatype of scalar alpha.

x device input <type> vector with n elements.

xType input Enumerant specifying the datatype of vector x.

incx input Stride between consecutive elements of x.

y device in/out <type> vector with n elements.

yType input Enumerant specifying the datatype of vector y.

incy input Stride between consecutive elements of y.

execution-
Type

input Enumerant specifying the datatype in which the computation
is executed.

The datatypes combinations currently supported for cublasAxpyEx() are listed in the following table:

4.8. BLAS-like Extension 193

http://www.netlib.org/blas/snrm2.f90
http://www.netlib.org/blas/dnrm2.f90
http://www.netlib.org/blas/scnrm2.f90
http://www.netlib.org/blas/dznrm2.f90

cuBLAS, Release 12.6

alpha x y execution

CUDA_R_32F CUDA_R_16F CUDA_R_16F CUDA_R_32F

CUDA_R_32F CUDA_R_16BF CUDA_R_16BF CUDA_R_32F

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUDA_C_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZEDThe library was not initialized.

CUBLAS_STATUS_NOT_SUPPORTEDThe combination of the parameters xType,yType, and execution-
Type is not supported.

CUBLAS_STATUS_EXECUTION_FAILEDThe function failed to launch on the GPU.

CUBLAS_STATUS_INVALID_VALUEalphaType or xType or yType or executionType is not supported.

For references please refer to:

saxpy, daxpy, caxpy, zaxpy

4.8.22. cublasDotEx()

cublasStatus_t cublasDotEx (cublasHandle_t handle,
int n,
const void *x,
cudaDataType xType,
int incx,
const void *y,
cudaDataType yType,
int incy,
void *result,
cudaDataType resultType,
cudaDataType executionType);

cublasStatus_t cublasDotcEx (cublasHandle_t handle,
int n,
const void *x,
cudaDataType xType,
int incx,
const void *y,
cudaDataType yType,
int incy,
void *result,

(continues on next page)

194 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

cuBLAS, Release 12.6

(continued from previous page)

cudaDataType resultType,
cudaDataType executionType);

These functions support the 64-bit Integer Interface.

These functions are an API generalization of the routines cublas<t>dot and cublas<t>dotc where in-
put data, output data and compute type can be specified independently. Note: cublas<t>dotc is dot
product conjugated, cublas<t>dotu is dot product unconjugated.

This function computes the dot product of vectors x and y. Hence, the result is
∑n

i=1 (x[k]× y[j])where
k = 1 + (i− 1) ∗ incx and j = 1 + (i− 1) ∗ incy . Notice that in the first equation the conjugate of the
element of vector x should be used if the function name ends in character ‘c’ and that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vectors x and y.

x device input <type> vector with n elements.

xType input Enumerant specifying the datatype of vector x.

incx input Stride between consecutive elements of x.

y device input <type> vector with n elements.

yType input Enumerant specifying the datatype of vector y.

incy input Stride between consecutive elements of y.

result host or de-
vice

out-
put

The resulting dot product, which is 0.0 if n<=0.

resultType input Enumerant specifying the datatype of the result.

execution-
Type

input Enumerant specifying the datatype in which the computation
is executed.

The datatypes combinations currently supported for cublasDotEx() and cublasDotcEx() are listed below:

x y result execution

CUDA_R_16F CUDA_R_16F CUDA_R_16F CUDA_R_32F

CUDA_R_16BF CUDA_R_16BF CUDA_R_16BF CUDA_R_32F

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUDA_C_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F

The possible error values returned by this function and their meanings are listed in the following table:

4.8. BLAS-like Extension 195

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZEDThe library was not initialized.

CUBLAS_STATUS_ALLOC_FAILEDThe reduction buffer could not be allocated.

CUBLAS_STATUS_NOT_SUPPORTEDThe combination of the parameters xType,yType, resultType and
executionType is not supported.

CUBLAS_STATUS_EXECUTION_FAILEDThe function failed to launch on the GPU.

CUBLAS_STATUS_INVALID_VALUExType or yType or resultType or executionType is not supported.

For references please refer to:

sdot, ddot, cdotu, cdotc, zdotu, zdotc

4.8.23. cublasRotEx()

cublasStatus_t cublasRotEx(cublasHandle_t handle,
int n,
void *x,
cudaDataType xType,
int incx,
void *y,
cudaDataType yType,
int incy,
const void *c, ∕* host or device pointer *∕
const void *s,
cudaDataType csType,
cudaDataType executiontype);

This function supports the 64-bit Integer Interface.

This function is an extension to the routine cublas<t>rot where input data, output data, cosine/sine
type, and compute type can be specified independently.

This function applies Givens rotation matrix (i.e., rotation in the x,y plane counter-clockwise by angle
defined by cos(alpha)=c, sin(alpha)=s):

G =

 c s

−s c

to vectors x and y.

Hence, the result is x[k] = c×x[k]+ s×y[j] and y[j] = −s×x[k]+ c×y[j]where k = 1+(i− 1) ∗ incx and
j = 1+(i− 1)∗ incy . Notice that the last two equations reflect 1-based indexing used for compatibility
with Fortran.

196 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

cuBLAS, Release 12.6

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

xType input enumerant specifying the datatype of vector x.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

yType input enumerant specifying the datatype of vector y.

incy input stride between consecutive elements of y.

c host or de-
vice

input cosine element of the rotation matrix.

s host or de-
vice

input sine element of the rotation matrix.

csType input enumerant specifying the datatype of c and s.

execution-
Type

input enumerant specifying the datatype in which the computation
is executed.

The datatypes combinations currently supported for cublasRotEx() are listed below :

execution-
Type

xType / yType csType

CUDA_R_32F CUDA_R_16BF
CUDA_R_16F
CUDA_R_32F

CUDA_R_16BF
CUDA_R_16F
CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_32F CUDA_C_32F
CUDA_C_32F

CUDA_R_32F
CUDA_C_32F

CUDA_C_64F CUDA_C_64F
CUDA_C_64F

CUDA_R_64F
CUDA_C_64F

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srot, drot, crot, csrot, zrot, zdrot

4.8. BLAS-like Extension 197

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

cuBLAS, Release 12.6

4.8.24. cublasScalEx()

cublasStatus_t cublasScalEx(cublasHandle_t handle,
int n,
const void *alpha,
cudaDataType alphaType,
void *x,
cudaDataType xType,
int incx,
cudaDataType executionType);

This function supports the 64-bit Integer Interface.

This function scales the vector x by the scalarα and overwrites it with the result. Hence, the performed
operation is x[j] = α× x[j] for i = 1, . . . , n and j = 1+ (i− 1) ∗ incx . Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

alpha host or de-
vice

input <type> scalar used for multiplication.

alphaType input enumerant specifying the datatype of scalar alpha.

x device in/out <type> vector with n elements.

xType input enumerant specifying the datatype of vector x.

incx input stride between consecutive elements of x.

execution-
Type

input enumerant specifying the datatype in which the computation
is executed.

The datatypes combinations currently supported for cublasScalEx() are listed below :

alpha x execution

CUDA_R_32F CUDA_R_16F CUDA_R_32F

CUDA_R_32F CUDA_R_16BF CUDA_R_32F

CUDA_R_32F CUDA_R_32F CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_32F CUDA_C_32F CUDA_C_32F

CUDA_C_64F CUDA_C_64F CUDA_C_64F

The possible error values returned by this function and their meanings are listed below.

198 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZEDthe library was not initialized

CUBLAS_STATUS_NOT_SUPPORTEDthe combination of the parameters xType and executionType is
not supported

CUBLAS_STATUS_EXECUTION_FAILEDthe function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUEalphaType or xType or executionType is not supported

For references please refer to:

sscal, dscal, csscal, cscal, zdscal, zscal

4.8. BLAS-like Extension 199

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

cuBLAS, Release 12.6

200 Chapter 4. Using the cuBLAS API

Chapter 5. Using the cuBLASLt API

5.1. General Description

The cuBLASLt library is a new lightweight library dedicated to GEneral Matrix-to-matrix Multiply
(GEMM) operations with a new flexible API. This new library adds flexibility in matrix data layouts, input
types, compute types, and also in choosing the algorithmic implementations and heuristics through
parameter programmability.

Once a set of options for the intended GEMM operation are identified by the user, these options can
be used repeatedly for different inputs. This is analogous to how cuFFT and FFTW first create a plan
and reuse for same size and type FFTs with different input data.

Note: The cuBLASLt library does not guarantee the support of all possible sizes and configurations,
however, since CUDA 12.2 update 2, the problem size limitations on m, n, and batch size have been
largely resolved. The main focus of the library is to provide the most performant kernels, which might
have some implied limitations. Some non-standard configurations may require a user to handle them
manually, typically by decomposing the problem into smaller parts (see Problem Size Limitations).

5.1.1. Problem Size Limitations

There are inherent problem size limitations that are a result of limitations in CUDA grid dimensions.
For example, many kernels do not support batch sizes greater than 65535 due to a limitation on the z
dimension of a grid. There are similar restriction on the m and n values for a given problem.

In cases where a problem cannot be run by a single kernel, cuBLASLt will attempt to decompose the
problem into multiple sub-problems and solve it by running the kernel on each sub-problem.

There are some restrictions on cuBLASLt internal problem decomposition which are summarized
below:

▶ Amax computations are not supported. This means that
CUBLASLT_MATMUL_DESC_AMAX_D_POINTER andCUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER
must be left unset (see cublasLtMatmulDescAttributes_t)

▶ All matrix layouts must have CUBLASLT_MATRIX_LAYOUT_ORDER set to
CUBLASLT_ORDER_COL (see cublasLtOrder_t)

201

cuBLAS, Release 12.6

▶ cuBLASLt will not partition along the n dimension when
CUBLASLT_MATMUL_DESC_EPILOGUE is set to CUBLASLT_EPILOGUE_DRELU_BGRAD or
CUBLASLT_EPILOGUE_DGELU_BGRAD (see cublasLtEpilogue_t)

To overcome these limitations, a user may want to partition the problem themself, launch kernels for
each sub-problem, and compute any necessary reductions to combine the results.

5.1.2. Heuristics Cache

cuBLASLt uses heuristics to pick themost suitable matmul kernel for execution based on the problem
sizes, GPU configuration, and other parameters. This requires performing some computations on the
host CPU, which could take tens of microseconds. To overcome this overhead, it is recommended
to query the heuristics once using cublasLtMatmulAlgoGetHeuristic() and then reuse the result for
subsequent computations using cublasLtMatmul().

For the cases where querying heuristics once and then reusing them is not feasible, cuBLASLt imple-
ments a heuristics cache thatmapsmatmul problems to kernels previously selected by heuristics. The
heuristics cache uses an LRU-like eviction policy and is thread-safe.

The user can control the heuristics cache capacitywith theCUBLASLT_HEURISTICS_CACHE_CAPACITY
environment variable or with the cublasLtHeuristicsCacheSetCapacity() function which has higher
precedence. The capacity is measured in number of entries and might be rounded up to the nearest
multiple of some factor for performance reasons. Each entry takes about 360 bytes but is subject to
change. The default capacity is 8192 entries.

Note: Setting capacity to zero disables the cache completely. This can be useful for workloads that
do not have a steady state and for which cache operations may have higher overhead than regular
heuristics computations.

Note: The cache is not ideal for performance reasons, so it is sometimes necessary to increase its
capacity 1.5x-2.x over the anticipated number of unique matmul problems to achieve a nearly perfect
hit rate.

See also: cublasLtHeuristicsCacheGetCapacity(), cublasLtHeuristicsCacheSetCapacity().

5.1.3. cuBLASLt Logging

cuBLASLt logging mechanism can be enabled by setting the following environment variables before
launching the target application:

▶ CUBLASLT_LOG_LEVEL=<level>, where <level> is one of the following levels:

▶ “0” - Off - logging is disabled (default)

▶ “1” - Error - only errors will be logged

▶ “2” - Trace - API calls that launch CUDA kernels will log their parameters and important in-
formation

▶ “3” - Hints - hints that can potentially improve the application’s performance

202 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

▶ “4” - Info - provides general information about the library execution, may contain details
about heuristic status

▶ “5” - API Trace - API calls will log their parameter and important information

▶ CUBLASLT_LOG_MASK=<mask>, where <mask> is a combination of the following flags:

▶ “0” - Off

▶ “1” - Error

▶ “2” - Trace

▶ “4” - Hints

▶ “8” - Info

▶ “16” - API Trace

For example, use CUBLASLT_LOG_MASK=5 to enable Error and Hints messages.

▶ CUBLASLT_LOG_FILE=<file_name>, where <file_name> is a path to a logging file. File name
may contain %i, that will be replaced with the process ID. For example <file_name>_%i.log.

If CUBLASLT_LOG_FILE is not defined, the log messages are printed to stdout.

Another option is to use the experimental cuBLASLt logging API. See:

cublasLtLoggerSetCallback(), cublasLtLoggerSetFile(), cublasLtLoggerOpenFile(), cublasLtLogger-
SetLevel(), cublasLtLoggerSetMask(), cublasLtLoggerForceDisable()

5.1.4. 8-bit Floating Point Data Types (FP8) Usage

FP8wasfirst introducedwithAda andHopperGPUs (compute capability 8.9 and above) and is designed
to further accelerate matrix multiplications. There are two types of FP8 available:

▶ CUDA_R_8F_E4M3 is designed to be accurate at a smaller dynamic range than half precision. The
E4 and M3 represent a 4-bit exponent and a 3-bit mantissa respectively. For more details, see
__nv__fp8__e4m3.

▶ CUDA_R_8F_E5M2 is designed to be accurate at a similar dynamic range as half precision. The E5
and M2 represent a 5-bit exponent and a 2-bit mantissa respectively. For more information see
__nv__fp8__e5m2.

Note: Unless otherwise stated, FP8 refers to both CUDA_R_8F_E4M3 and CUDA_R_8F_E5M2.

In order to maintain accurate FP8 matrix multiplications, we define native compute FP8 matrix multi-
plication as follows:

D = scaleD · (α · scaleA · scaleB · op(A)op(B) + β · scaleC · C)

where A, B, and C are input matrices, and scaleA, scaleB, scaleC, scaleD, alpha, and beta are input
scalars. This differs from the other matrix multiplication routines because of this addition of scaling
factors for each matrix. The scaleA, scaleB, and scaleC are used for de-quantization, and scaleD is
used for quantization. Note that all the scaling factors are applied multiplicatively. This means that
sometimes it is necessary to use a scaling factor or its reciprocal depending on the context in which
it is applied. For more information on FP8, see cublasLtMatmul() and cublasLtMatmulDescAttributes_t.

5.1. General Description 203

https://docs.nvidia.com/cuda/cuda-math-api/struct____nv__fp8__e4m3.html#struct____nv__fp8__e4m3
https://docs.nvidia.com/cuda/cuda-math-api/struct____nv__fp8__e5m2.html#struct____nv__fp8__e5m2

cuBLAS, Release 12.6

For FP8 matrix multiplications, epilogues and amaxD may be computed as follows:

Dtemp, Auxtemp = Epilogue(α · scaleA · scaleB · op(A)op(B) + β · scaleC · C)

amaxD = absmax(Dtemp)

amaxAux = absmax(Auxtemp)

D = scaleD ∗Dtemp

Aux = scaleAux ∗Auxtemp

Here Aux is an auxiliary output of an epilogue function like GELU, scaleAux is an optional scal-
ing factor that can be applied to Aux, and amaxAux is the maximum absolute value in Aux be-
fore scaling. For more information, see attributes CUBLASLT_MATMUL_DESC_AMAX_D_POINTER and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER in cublasLtMatmulDescAttributes_t.

5.1.5. Disabling CPU Instructions

As mentioned in the Heuristics Cache section, cuBLASLt heuristics perform some compute-intensive
operations on the host CPU. To speed-up the operations, the implementation detects CPU capabilities
andmay use special instructions, such asAdvancedVector Extensions (AVX) on x86-64CPUs. However,
in some rare cases this might be not desirable. For instance, using advanced instructions may result
in CPU running at a lower frequency, which would affect performance of the other host code.

The user can optionally instruct the cuBLASLt library to not use some CPU instructions with
the CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK environment variable or with the cublasLtDis-
ableCpuInstructionsSetMask() function which has higher precedence. The default mask is 0, meaning
that there are no restrictions.

Please check cublasLtDisableCpuInstructionsSetMask() for more information.

5.1.6. Atomics Synchronization

Atomics synchronization allows optimizing matmul workloads by enabling cublasLtMatmul() to have a
producer or consumer relationship with another concurrently running kernel. This allows overlapping
computation and communication with a finer granularity. Conceptually, matmul is provided with an
array containing 32-bit integer counters, and then:

▶ In the consumer mode, either matrix A is partitioned into chunks by rows, or matrix B is parti-
tioned into chunks by columns1. A chunk can be read from memory and used in computations
only when the corresponding atomic counter reaches value of 0. The producer should execute
a memory fence to ensure that the written value is visible to the concurrently running matmul
kernel2.

▶ In the producer mode, the output matrix C (or D in the out-of-place mode), is partitioned by rows
or columns, and after a chunk is computed, the corresponding atomic counter is set to 0. Each
counter must be initialized to 1 before the matmul kernel runs.

The array of counters are passed tomatmuls via theCUBLASLT_MATMUL_DESC_ATOMIC_SYNC_IN_COUNTERS_POINTER
and CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_OUT_COUNTERS_POINTER compute descriptor at-

1 The current implementation allows partitioning either the rows or the columns of thematrixes, but not both. Batched cases
are not supported.

2 One possible implementation of a memory fence is cuda::atomic_thread_fence(cuda::memory_order_seq_cst,
cuda::thread_scope::thread_scope_device) (see cuda::atomic_thread_fence() for more details).

204 Chapter 5. Using the cuBLASLt API

https://nvidia.github.io/libcudacxx/extended_api/synchronization_primitives/atomic/atomic_thread_fence.html

cuBLAS, Release 12.6

tributes for the consumer and producer modes respectively3. The arrays must have a sufficient
number of elements for all the chunks.

The number of chunks is controlled byCUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_ROWS
and CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_COLS compute descriptor attributes.
Both of these attributes must be set to a value greater than zero for the feature to be enabled. For
the column-major layout, the number of chunks must satisfy:

0 ≤ NUM_CHUNKS_ROWS ≤floor
(

M
TILE_SIZE_M ∗ CLUSTER_SHAPE_M

)
0 ≤ NUM_CHUNKS_COLS ≤floor

(
N

TILE_SIZE_N ∗ CLUSTER_SHAPE_N

)
For row-major layout, M and N in tile size and cluster shapemust be swapped. These restrictionsmean
that it is required to first query heuristic via cublasLtMatmulAlgoGetHeuristic() and inspect the result
for tile and cluster shapes, and only then set the number of chunks.

The pseudocode below shows the principles of operation:

∕∕ The code below shows operation when partitioning over
∕∕ rows assuming column-major layout and TN case.
∕∕
∕∕ The case when partitioning is done over columns or
∕∕ row-major case are handled in a similar fashion,
∕∕ with the main difference being the offsets
∕∕ computations.
∕∕
∕∕ Note that the actual implementation does not
∕∕ guarantee in which order the chunks are computed,
∕∕ and may employ various optimizations to improve
∕∕ overall performance.
∕∕
∕∕ Here:
∕∕ - A, B, C -- input matrices in the column-major layout
∕∕ - lda -- leading dimension of matrix A
∕∕ - M, N, K -- the original problem dimensions
∕∕ - counters_in[] and counters_out[] -- the arrays of
∕∕ input and output atomic counters
∕∕
for (int i = 0; i < NUM_CHUNKS_ROWS; i++) {

∕∕ Consumer: wait for the input counter to become 0
if (consumer) {

while (counters_in[i] != 0); ∕∕ spin
}

∕∕ compute chunk dimensions
chunk_m_begin = floor((double)M ∕ NUM_CHUNKS_ROWS * i);
chunk_m_end = floor((double)M ∕ NUM_CHUNKS_ROWS * (i + 1));
chunk_m = chunk_m_end - chunk_m_begin;

∕∕ Compute the current chunk
matmul(chunk_m, N, K,

A[chunk_m_begin * lda], ∕∕ A is col-major transposed
B, ∕∕ B is not partitioned
C[chunk_m_begin] ∕∕ C is col-major non-transposed

(continues on next page)

3 The current implementation allows to only enable either the producer or the consumer mode, but not both. Matmul will
return an error if both input and output counter pointers to a non-NULL value.

5.1. General Description 205

cuBLAS, Release 12.6

(continued from previous page)

);

∕∕ Producer: set the counter to 0 when done
if (producer) {

counters_out[i] = 0;
∕∕ make the written value visible to the consumer kernel
memory_fence();

}
}

It should be noted that, in general, CUDA programmingmodel provides few kernel co-scheduling guar-
antees. Thus, use of this feature requires careful orchestration of producer and consumer kernels
launch order and resource availability, as it easy to create a deadlock situation. A deadlock may occur
in the following cases (this is not an exhaustive list):

▶ If a producer kernel cannot start because consumer kernel was launched first and is occupying
some of SMs that are needed by the producer kernel to launch. It is strongly recommended to set
CUBLASLT_MATMUL_DESC_SM_COUNT_TARGET to carve out some SMs for non-matmul (typically
communication) kernels to execute on.

▶ If cudaDeviceSynchronize() is called after consumer kernel starts but before the producer kernel
does.

▶ When lazy module loading is enabled, and producer kernel cannot be loaded while the consumer
kernel is running due to locking in the CUDA runtime library. Both kernels also must be loaded
before they are run together to avoid this situation. Using CUDA Graphs is another way to avoid
deadlocks due to lazy loading.

Note: This feature is aimed at advanced users and is only available on Hopper architecture for FP8
non-batched cases with fast accumulation mode enabled, and is considered to have beta quality due
to the large number of restrictions on its use.

5.2. cuBLASLt Code Examples

Please visit https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt for updated code
examples.

5.3. cuBLASLt Datatypes Reference

5.3.1. cublasLtClusterShape_t

cublasLtClusterShape_t is an enumerated type used to configure thread block cluster dimensions.
Thread block clusters add an optional hierarchical level and are made up of thread blocks. Similar
to thread blocks, these can be one, two, or three-dimensional. See also Thread Block Clusters.

206 Chapter 5. Using the cuBLASLt API

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/lazy-loading.html#lazy-loading
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-block-clusters

cuBLAS, Release 12.6

Value Description

CUBLASLT_CLUSTER_SHAPE_AUTO Cluster shape is automatically selected.

CUBLASLT_CLUSTER_SHAPE_1x1x1 Cluster shape is 1 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_1x2x1 Cluster shape is 1 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_1x4x1 Cluster shape is 1 x 4 x 1.

CUBLASLT_CLUSTER_SHAPE_2x1x1 Cluster shape is 2 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_2x2x1 Cluster shape is 2 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_2x4x1 Cluster shape is 2 x 4 x 1.

CUBLASLT_CLUSTER_SHAPE_4x1x1 Cluster shape is 4 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_4x2x1 Cluster shape is 4 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_4x4x1 Cluster shape is 4 x 4 x 1.

CUBLASLT_CLUSTER_SHAPE_1x8x1 Cluster shape is 1 x 8 x 1.

CUBLASLT_CLUSTER_SHAPE_8x1x1 Cluster shape is 8 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_2x8x1 Cluster shape is 2 x 8 x 1.

CUBLASLT_CLUSTER_SHAPE_8x2x1 Cluster shape is 8 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_1x16x1 Cluster shape is 1 x 16 x 1.

CUBLASLT_CLUSTER_SHAPE_16x1x1 Cluster shape is 16 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_1x3x1 Cluster shape is 1 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_1x5x1 Cluster shape is 1 x 5 x 1.

CUBLASLT_CLUSTER_SHAPE_1x6x1 Cluster shape is 1 x 6 x 1.

CUBLASLT_CLUSTER_SHAPE_1x7x1 Cluster shape is 1 x 7 x 1.

CUBLASLT_CLUSTER_SHAPE_1x9x1 Cluster shape is 1 x 9 x 1.

CUBLASLT_CLUSTER_SHAPE_1x10x1 Cluster shape is 1 x 10 x 1.

CUBLASLT_CLUSTER_SHAPE_1x11x1 Cluster shape is 1 x 11 x 1.

CUBLASLT_CLUSTER_SHAPE_1x12x1 Cluster shape is 1 x 12 x 1.

CUBLASLT_CLUSTER_SHAPE_1x13x1 Cluster shape is 1 x 13 x 1.

CUBLASLT_CLUSTER_SHAPE_1x14x1 Cluster shape is 1 x 14 x 1.

CUBLASLT_CLUSTER_SHAPE_1x15x1 Cluster shape is 1 x 15 x 1.

CUBLASLT_CLUSTER_SHAPE_2x3x1 Cluster shape is 2 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_2x5x1 Cluster shape is 2 x 5 x 1.

CUBLASLT_CLUSTER_SHAPE_2x6x1 Cluster shape is 2 x 6 x 1.

CUBLASLT_CLUSTER_SHAPE_2x7x1 Cluster shape is 2 x 7 x 1.

CUBLASLT_CLUSTER_SHAPE_3x1x1 Cluster shape is 3 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_3x2x1 Cluster shape is 3 x 2 x 1.

continues on next page

5.3. cuBLASLt Datatypes Reference 207

cuBLAS, Release 12.6

Table 1 – continued from previous page

Value Description

CUBLASLT_CLUSTER_SHAPE_3x3x1 Cluster shape is 3 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_3x4x1 Cluster shape is 3 x 4 x 1.

CUBLASLT_CLUSTER_SHAPE_3x5x1 Cluster shape is 3 x 5 x 1.

CUBLASLT_CLUSTER_SHAPE_4x3x1 Cluster shape is 4 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_5x1x1 Cluster shape is 5 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_5x2x1 Cluster shape is 5 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_5x3x1 Cluster shape is 5 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_6x1x1 Cluster shape is 6 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_6x2x1 Cluster shape is 6 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_7x1x1 Cluster shape is 7 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_7x2x1 Cluster shape is 7 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_9x1x1 Cluster shape is 9 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_10x1x1 Cluster shape is 10 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_11x1x1 Cluster shape is 11 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_12x1x1 Cluster shape is 12 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_13x1x1 Cluster shape is 13 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_14x1x1 Cluster shape is 14 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_15x1x1 Cluster shape is 15 x 1 x 1.

5.3.2. cublasLtEpilogue_t

The cublasLtEpilogue_t is an enum type to set the postprocessing options for the epilogue.

208 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Value Description

CUBLASLT_EPILOGUE_DEFAULT = 1 No special postprocessing, just scale and quan-
tize the results if necessary.

CUBLASLT_EPILOGUE_RELU = 2 Apply ReLU point-wise transform to the results
(x := max(x, 0)).

CUBLASLT_EPILOGUE_RELU_AUX =
CUBLASLT_EPILOGUE_RELU | 128

Apply ReLU point-wise transform to the
results (x := max(x, 0)). This epi-
logue mode produces an extra output, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_BIAS = 4 Apply (broadcast) bias from the bias vector. Bias
vector length must match matrix D rows, and
it must be packed (such as stride between vec-
tor elements is 1). Bias vector is broadcast to
all columns and added before applying the final
postprocessing.

CUBLASLT_EPILOGUE_RELU_BIAS
= CUBLASLT_EPILOGUE_RELU |
CUBLASLT_EPILOGUE_BIAS

Apply bias and then ReLU transform.

CUBLASLT_EPILOGUE_RELU_AUX_BIAS
= CUBLASLT_EPILOGUE_RELU_AUX |
CUBLASLT_EPILOGUE_BIAS

Apply bias and then ReLU transform. This
epilogue mode produces an extra output, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_DRELU = 8 | 128 Apply ReLu gradient to matmul output. Store
ReLu gradient in the output matrix. This
epilogue mode requires an extra input, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_DRELU_BGRAD =
CUBLASLT_EPILOGUE_DRELU | 16

Apply independently ReLu and Bias gra-
dient to matmul output. Store ReLu
gradient in the output matrix, and
Bias gradient in the bias buffer (see
CUBLASLT_MATMUL_DESC_BIAS_POINTER).
This epilogue mode requires an extra input, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_GELU = 32 Apply GELU point-wise transform to the results
(x := GELU(x)).

CUBLASLT_EPILOGUE_GELU_AUX =
CUBLASLT_EPILOGUE_GELU | 128

Apply GELU point-wise transform to the
results (x := GELU(x)). This epilogue
mode outputs GELU input as a sepa-
rate matrix (useful for training). See
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_GELU_BIAS
= CUBLASLT_EPILOGUE_GELU |
CUBLASLT_EPILOGUE_BIAS

Apply Bias and then GELU transform4.

CUBLASLT_EPILOGUE_GELU_AUX_BIAS
= CUBLASLT_EPILOGUE_GELU_AUX |
CUBLASLT_EPILOGUE_BIAS

Apply Bias and then GELU transformPage 210, 4.
This epilogue mode outputs GELU input as
a separate matrix (useful for training). See
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_DGELU = 64 | 128 Apply GELU gradient to matmul output. Store
GELU gradient in the output matrix. This
epilogue mode requires an extra input, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_DGELU_BGRAD =
CUBLASLT_EPILOGUE_DGELU | 16

Apply independently GELU and Bias gra-
dient to matmul output. Store GELU
gradient in the output matrix, and
Bias gradient in the bias buffer (see
CUBLASLT_MATMUL_DESC_BIAS_POINTER).
This epilogue mode requires an extra input, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER
of cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_BGRADA = 256 Apply Bias gradient to the input matrix A.
The bias size corresponds to the number
of rows of the matrix D. The reduction
happens over the GEMM’s “k” dimension.
Store Bias gradient in the bias buffer, see
CUBLASLT_MATMUL_DESC_BIAS_POINTER of
cublasLtMatmulDescAttributes_t.

CUBLASLT_EPILOGUE_BGRADB = 512 Apply Bias gradient to the input matrix B.
The bias size corresponds to the number
of columns of the matrix D. The reduction
happens over the GEMM’s “k” dimension.
Store Bias gradient in the bias buffer, see
CUBLASLT_MATMUL_DESC_BIAS_POINTER of
cublasLtMatmulDescAttributes_t.

5.3. cuBLASLt Datatypes Reference 209

cuBLAS, Release 12.6

NOTES:

5.3.3. cublasLtHandle_t

The cublasLtHandle_t type is a pointer type to an opaque structure holding the cuBLASLt library con-
text. Use cublasLtCreate() to initialize the cuBLASLt library context and return a handle to an opaque
structure holding the cuBLASLt library context, and use cublasLtDestroy() to destroy a previously cre-
ated cuBLASLt library context descriptor and release the resources.

Note: cuBLAS handle (cublasHandle_t) encapsulates a cuBLASLt handle. Any valid cublasHandle_t can
be used in place of cublasLtHandle_t with a simple cast. However, unlike a cuBLAS handle, a cuBLASLt
handle is not tied to any particular CUDA context.

5.3.4. cublasLtLoggerCallback_t

cublasLtLoggerCallback_t is a callback function pointer type. A callback function can be set using
cublasLtLoggerSetCallback().

Parameters:

Parameter Memory Input / Output Description

logLevel Output See cuBLASLt Logging.

functionName Output The name of the API that logged this message.

message Output The log message.

5.3.5. cublasLtMatmulAlgo_t

cublasLtMatmulAlgo_t is an opaque structure holding the description of the matrix multiplication al-
gorithm. This structure can be trivially serialized and later restored for use with the same version of
cuBLAS library to save on selecting the right configuration again.

5.3.6. cublasLtMatmulAlgoCapAttributes_t

cublasLtMatmulAlgoCapAttributes_t enumerates matrix multiplication algorithm capability attributes
that can be retrieved from an initialized cublasLtMatmulAlgo_t descriptor using cublasLtMatmulAlgo-
CapGetAttribute().

4 GELU (Gaussian Error Linear Unit) is approximated by: 0.5x
(
1 + tanh

(√
2/π

(
x+ 0.044715x3

)))

210 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Value Description Data
Type

CUBLASLT_ALGO_CAP_SPLITK_SUPPORTSupport for split-K. Boolean (0 or 1) to express
if split-K implementation is supported. 0 means
no support, and supported otherwise. See
CUBLASLT_ALGO_CONFIG_SPLITK_NUM of cublasLt-
MatmulAlgoConfigAttributes_t.

int32_t

CUBLASLT_ALGO_CAP_REDUCTION_SCHEME_MASKMask to express the types of reduction schemes sup-
ported, see cublasLtReductionScheme_t. If the re-
duction scheme is not masked out then it is sup-
ported. For example: int isReductionSchemeCom-
puteTypeSupported ? (reductionSchemeMask
& CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE)
== CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE
? 1 : 0;

uint32_t

CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORTSupport for CTA-swizzling. Boolean (0 or 1) to
express if CTA-swizzling implementation is sup-
ported. 0 means no support, and 1 means sup-
ported value of 1; other values are reserved. See
also CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING of
cublasLtMatmulAlgoConfigAttributes_t.

uint32_t

CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORTSupport strided batch. 0 means no support, sup-
ported otherwise.

int32_t

CUBLASLT_ALGO_CAP_OUT_OF_PLACE_RESULT_SUPPORTSupport results out of place (D != C in D = alpha.A.B +
beta.C). 0 means no support, supported otherwise.

int32_t

CUBLASLT_ALGO_CAP_UPLO_SUPPORTSyrk (symmetric rank k update)/herk (Hermitian rank
k update) support (on top of regular gemm). 0 means
no support, supported otherwise.

int32_t

CUBLASLT_ALGO_CAP_TILE_IDS The tile ids possible to use. See cublasLtMat-
mulTile_t. If no tile ids are supported then
use CUBLASLT_MATMUL_TILE_UNDEFINED. Use
cublasLtMatmulAlgoCapGetAttribute() with sizeIn-
Bytes = 0 to query the actual count.

Array of
uint32_t

CUBLASLT_ALGO_CAP_STAGES_IDSThe stages ids possible to use. See cublasLtMat-
mulStages_t. If no stages ids are supported then
use CUBLASLT_MATMUL_STAGES_UNDEFINED. Use
cublasLtMatmulAlgoCapGetAttribute() with sizeIn-
Bytes = 0 to query the actual count.

Array of
uint32_t

CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAXCustom option range is from 0 to
CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX (in-
clusive). SeeCUBLASLT_ALGO_CONFIG_CUSTOM_OPTION
of cublasLtMatmulAlgoConfigAttributes_t .

int32_t

CUBLASLT_ALGO_CAP_MATHMODE_IMPLIndicates whether the algorithm is using regular com-
pute or tensor operations. 0 means regular compute,
1 means tensor operations. DEPRECATED

int32_t

CUBLASLT_ALGO_CAP_GAUSSIAN_IMPLIndicatewhether the algorithm implements theGaus-
sian optimization of complex matrix multiplication.
0 means regular compute; 1 means Gaussian. See
cublasMath_t. DEPRECATED

int32_t

CUBLASLT_ALGO_CAP_CUSTOM_MEMORY_ORDERIndicates whether the algorithm supports custom
(not COL or ROW memory order). 0 means only COL
and ROW memory order is allowed, non-zero means
that algo might have different requirements. See
cublasLtOrder_t.

int32_t

CUBLASLT_ALGO_CAP_POINTER_MODE_MASKBitmask enumerating the pointer modes the algo-
rithm supports. See cublasLtPointerModeMask_t.

uint32_t

CUBLASLT_ALGO_CAP_EPILOGUE_MASKBitmask enumerating the kinds of postprocessing al-
gorithm supported in the epilogue. See cublasLtEpi-
logue_t.

uint32_t

CUBLASLT_ALGO_CAP_LD_NEGATIVESupport for negative ld for all of the matrices. 0
means no support, supported otherwise.

uint32_t

CUBLASLT_ALGO_CAP_NUMERICAL_IMPL_FLAGSDetails about algorithm’s implementation that af-
fect it’s numerical behavior. See cublasLtNumeri-
calImplFlags_t.

uint64_t

CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_A_BYTESMinimum alignment required for A matrix in bytes. uint32_t

CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_B_BYTESMinimum alignment required for B matrix in bytes. uint32_t

CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_C_BYTESMinimum alignment required for C matrix in bytes. uint32_t

CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_D_BYTESMinimum alignment required for D matrix in bytes. uint32_t

CUBLASLT_ALGO_CAP_ATOMIC_SYNCSupport for synchronization via atomic counters. See
Atomics Synchronization.

int32_t

5.3. cuBLASLt Datatypes Reference 211

cuBLAS, Release 12.6

5.3.7. cublasLtMatmulAlgoConfigAttributes_t

cublasLtMatmulAlgoConfigAttributes_t is an enumerated type that contains the configuration at-
tributes for cuBLASLt matrix multiply algorithms. The configuration attributes are algorithm-specific,
and can be set. The attributes configuration of a given algorithm should agree with its capability at-
tributes. Use cublasLtMatmulAlgoConfigGetAttribute() and cublasLtMatmulAlgoConfigSetAttribute() to
get and set the attribute value of a matmul algorithm descriptor.

Value Description Data
Type

CUBLASLT_ALGO_CONFIG_ID Read-only attribute. Algorithm index. See cublasLtMatmu-
lAlgoGetIds(). Set by cublasLtMatmulAlgoInit().

int32_t

CUBLASLT_ALGO_CONFIG_TILE_IDTile id. See cublasLtMatmulTile_t. Default:
CUBLASLT_MATMUL_TILE_UNDEFINED.

uint32_t

CUBLASLT_ALGO_CONFIG_STAGES_IDstages id, see cublasLtMatmulStages_t. Default:
CUBLASLT_MATMUL_STAGES_UNDEFINED.

uint32_t

CUBLASLT_ALGO_CONFIG_SPLITK_NUMNumber of K splits. If the number of K splits is greater than
one, SPLITK_NUMparts ofmatrixmultiplicationwill be com-
puted in parallel. The results will be accumulated according
to CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME.

uint32_t

CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEMEReduction scheme to use when splitK value > 1. Default:
CUBLASLT_REDUCTION_SCHEME_NONE. See cublasLtReduc-
tionScheme_t.

uint32_t

CUBLASLT_ALGO_CONFIG_CTA_SWIZZLINGEnable/Disable CTA swizzling. Change mapping from CUDA
grid coordinates to parts of the matrices. Possible values: 0
and 1; other values reserved.

uint32_t

CUBLASLT_ALGO_CONFIG_CUSTOM_OPTIONCustom option value. Each algorithm can support
some custom options that don’t fit the descrip-
tion of the other configuration attributes. See the
CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX of cublasLt-
MatmulAlgoCapAttributes_t for the accepted range for a
specific case.

uint32_t

CUBLASLT_ALGO_CONFIG_INNER_SHAPE_IDInner shape ID. Refer to cublasLtMatmulInnerShape_t.
Default: CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED.

uint16_t

CUBLASLT_ALGO_CONFIG_CLUSTER_SHAPE_IDCluster shape ID. Refer to cublasLtClusterShape_t.De-
fault: CUBLASLT_CLUSTER_SHAPE_AUTO.

uint16_t

212 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.3.8. cublasLtMatmulDesc_t

The cublasLtMatmulDesc_t is a pointer to an opaque structure holding the description of the matrix
multiplication operation cublasLtMatmul(). A descriptor can be created by calling cublasLtMatmulDe-
scCreate() and destroyed by calling cublasLtMatmulDescDestroy().

5.3.9. cublasLtMatmulDescAttributes_t

cublasLtMatmulDescAttributes_t is a descriptor structure containing the attributes that define the
specifics of the matrix multiply operation. Use cublasLtMatmulDescGetAttribute() and cublasLtMat-
mulDescSetAttribute() to get and set the attribute value of a matmul descriptor.

5.3. cuBLASLt Datatypes Reference 213

cuBLAS, Release 12.6

Attribute Name Description Data Type

CUBLASLT_MATMUL_DESC_COMPUTE_TYPECompute type. Defines the
data type used for multiply and
accumulate operations, and the
accumulator during the matrix
multiplication. See cublasCom-
puteType_t.

int32_t

CUBLASLT_MATMUL_DESC_SCALE_TYPEScale type. Defines the data
type of the scaling factors
alpha and beta. The accu-
mulator value and the value
from matrix C are typically
converted to scale type be-
fore final scaling. The value
is then converted from scale
type to the type of matrix
D before storing in memory.
Default value is aligned with
CUBLASLT_MATMUL_DESC_COMPUTE_TYPE.
See cudaDataType_t.

int32_t

CUBLASLT_MATMUL_DESC_POINTER_MODESpecifies alpha and beta
are passed by reference,
whether they are scalars on
the host or on the device, or
device vectors. Default value is:
CUBLASLT_POINTER_MODE_HOST
(i.e., on the host). See cublasLt-
PointerMode_t.

int32_t

CUBLASLT_MATMUL_DESC_TRANSASpecifies the type of transfor-
mation operation that should
be performed on matrix A. De-
fault value is: CUBLAS_OP_N
(i.e., non-transpose operation).
See cublasOperation_t.

int32_t

CUBLASLT_MATMUL_DESC_TRANSBSpecifies the type of transfor-
mation operation that should
be performed on matrix B. De-
fault value is: CUBLAS_OP_N
(i.e., non-transpose operation).
See cublasOperation_t.

int32_t

CUBLASLT_MATMUL_DESC_TRANSCSpecifies the type of transfor-
mation operation that should
be performed on matrix C.
Currently only CUBLAS_OP_N
is supported. Default value
is: CUBLAS_OP_N (i.e., non-
transpose operation). See
cublasOperation_t.

int32_t

CUBLASLT_MATMUL_DESC_FILL_MODEIndicates whether the lower
or upper part of the dense
matrix was filled, and con-
sequently should be used by
the function. Default value is:
CUBLAS_FILL_MODE_FULL.See
cublasFillMode_t.

int32_t

CUBLASLT_MATMUL_DESC_EPILOGUEEpilogue function. See
cublasLtEpilogue_t.
Default value is:
CUBLASLT_EPILOGUE_DEFAULT.

uint32_t

CUBLASLT_MATMUL_DESC_BIAS_POINTERBias or Bias gradient vector
pointer in the device memory.

▶ Input vector with length
that matches the num-
ber of rows of matrix
D when one of the fol-
lowing epilogues is used:
CUBLASLT_EPILOGUE_BIAS,
CUBLASLT_EPILOGUE_RELU_BIAS,
CUBLASLT_EPILOGUE_RELU_AUX_BIAS,
CUBLASLT_EPILOGUE_GELU_BIAS,
CUBLASLT_EPILOGUE_GELU_AUX_BIAS.

▶ Output vector with length
that matches the num-
ber of rows of matrix
D when one of the fol-
lowing epilogues is used:
CUBLASLT_EPILOGUE_DRELU_BGRAD,
CUBLASLT_EPILOGUE_DGELU_BGRAD,
CUBLASLT_EPILOGUE_BGRADA.

▶ Output vector with length
that matches the number
of columns of matrix
D when one of the fol-
lowing epilogues is used:
CUBLASLT_EPILOGUE_BGRADB.

Bias vector elements
are the same type as
alpha and beta (see
CUBLASLT_MATMUL_DESC_SCALE_TYPE
in this table) when matrix D
datatype is CUDA_R_8I and
same as matrix D datatype
otherwise. See the datatypes
table under cublasLtMatmul()
for detailed mapping. Default
value is: NULL.

void * / const void *

CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDEStride (in elements) to the next
bias or bias gradient vector for
strided batch operations. The
default value is 0.

int64_t

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTERPointer for epilogue auxiliary
buffer.

▶ Output vector for
ReLu bit-mask in
forward pass when
CUBLASLT_EPILOGUE_RELU_AUX
or
CUBLASLT_EPILOGUE_RELU_AUX_BIAS
epilogue is used.

▶ Input vector for ReLu
bit-mask in back-
ward pass when
CUBLASLT_EPILOGUE_DRELU
or
CUBLASLT_EPILOGUE_DRELU_BGRAD
epilogue is used.

▶ Output of GELU input ma-
trix in forward pass when
CUBLASLT_EPILOGUE_GELU_AUX_BIAS
epilogue is used.

▶ Input of GELU in-
put matrix for back-
ward pass when
CUBLASLT_EPILOGUE_DGELU
or
CUBLASLT_EPILOGUE_DGELU_BGRAD
epilogue is used.

For aux data type, see
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE.
Routines that don’t deref-
erence this pointer, like
cublasLtMatmulAlgoGetH-
euristic() depend on its value
to determine expected pointer
alignment. Requires setting the
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD
attribute.

void * / const void *

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LDLeading dimension for epilogue
auxiliary buffer.

▶ ReLu bit-mask matrix
leading dimension in el-
ements (i.e. bits) when
CUBLASLT_EPILOGUE_RELU_AUX,
CUBLASLT_EPILOGUE_RELU_AUX_BIAS,
CUBLASLT_EPILOGUE_DRELU_BGRAD,
or
CUBLASLT_EPILOGUE_DRELU_BGRAD
epilogue is used. Must be
divisible by 128 and be no
less than the number of
rows in the output matrix.

▶ GELU input matrix
leading dimension
in elements when
CUBLASLT_EPILOGUE_GELU_AUX_BIAS,
CUBLASLT_EPILOGUE_DGELU,
or
CUBLASLT_EPILOGUE_DGELU_BGRAD
epilogue used. Must be
divisible by 8 and be no
less than the number of
rows in the output matrix.

int64_t

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_BATCH_STRIDEBatch stride for epilogue auxil-
iary buffer.

▶ ReLu bit-mask matrix
batch stride in ele-
ments (i.e. bits) when
CUBLASLT_EPILOGUE_RELU_AUX,
CUBLASLT_EPILOGUE_RELU_AUX_BIAS
or
CUBLASLT_EPILOGUE_DRELU_BGRAD
epilogue is used. Must be
divisible by 128.

▶ GELU input matrix batch
stride in elements when
CUBLASLT_EPILOGUE_GELU_AUX_BIAS,
CUBLASLT_EPILOGUE_DRELU,
or
CUBLASLT_EPILOGUE_DGELU_BGRAD
epilogue used. Must be
divisible by 8.

Default value: 0.

int64_t

CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDEBatch stride for alpha vec-
tor. Used together with
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST
when matrix D’s
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT
is greater than 1. If
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO
is set then
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE
must be set to 0 as this mode
doesn’t support batched alpha
vector. Default value: 0.

int64_t

CUBLASLT_MATMUL_DESC_SM_COUNT_TARGETNumber of SMs to target for
parallel execution. Optimizes
heuristics for execution on a
different number of SMs when
user expects a concurrent
stream to be using some of
the device resources. Default
value: 0.

int32_t

CUBLASLT_MATMUL_DESC_A_SCALE_POINTERDevice pointer to the scale fac-
tor value that converts data
in matrix A to the compute
data type range. The scal-
ing factor must have the same
type as the compute type. If
not specified, or set to NULL,
the scaling factor is assumed
to be 1. If set for an un-
supported matrix data, scale,
and compute type combination,
calling cublasLtMatmul() will re-
turn CUBLAS_INVALID_VALUE.
Default value: NULL

const void*

CUBLASLT_MATMUL_DESC_B_SCALE_POINTEREquivalent to
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER
for matrix B. Default value:
NULL

const void*

CUBLASLT_MATMUL_DESC_C_SCALE_POINTEREquivalent to
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER
for matrix C. Default value:
NULL

const void*

CUBLASLT_MATMUL_DESC_D_SCALE_POINTEREquivalent to
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER
for matrix D. Default value:
NULL

const void*

CUBLASLT_MATMUL_DESC_AMAX_D_POINTERDevice pointer to the memory
location that on completion will
be set to themaximumof abso-
lute values in the outputmatrix.
The computed value has the
same type as the compute type.
If not specified, or set to NULL,
the maximum absolute value is
not computed. If set for an
unsupportedmatrix data, scale,
and compute type combination,
calling cublasLtMatmul() will re-
turn CUBLAS_INVALID_VALUE.
Default value: NULL

void *

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPEThe type of the data
that will be stored in
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
If unset (or set to the default
value of -1), the data type is
set to be the output matrix
element data type (DType) with
some exceptions:

▶ ReLu uses a bit-mask.
▶ For FP8 kernels with an

output type (DType) of
CUDA_R_8F_E4M3, the
data type can be set to a
non-default value if:

1. AType and BType are
CUDA_R_8F_E4M3.

2. Bias Type is CUDA_R_16F.
3. CType is CUDA_R_16BF or

CUDA_R_16F
4.

CUBLASLT_MATMUL_DESC_EPILOGUE
is set to
CUBLASLT_EPILOGUE_GELU_AUX

When CType is CUDA_R_16BF,
the data type may be
set to CUDA_R_16BF or
CUDA_R_8F_E4M3. When
CType is CUDA_R_16F, the
data type may be set to
CUDA_R_16F. Otherwise, the
data type should be left unset
or set to the default value of -1.
If set for an unsupported
matrix data, scale, and com-
pute type combination, calling
cublasLtMatmul() will return
CUBLAS_INVALID_VALUE. De-
fault value: -1

int32_t based on cudaDataType

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTERDevice pointer to the scaling
factor value to convert results
from compute type data range
to storage data range in the
auxiliary matrix that is set via
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
The scaling factor value must
have the same type as the
compute type. If not specified,
or set to NULL, the scaling
factor is assumed to be 1.
If set for an unsupported
matrix data, scale, and com-
pute type combination, calling
cublasLtMatmul() will return
CUBLAS_INVALID_VALUE. De-
fault value: NULL

void *

CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTERDevice pointer to the mem-
ory location that on com-
pletion will be set to the
maximum of absolute val-
ues in the buffer that is set via
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
The computed value has the
same type as the compute
type. If not specified, or set
to NULL, the maximum abso-
lute value is not computed.
If set for an unsupported
matrix data, scale, and com-
pute type combination, calling
cublasLtMatmul() will return
CUBLAS_INVALID_VALUE. De-
fault value: NULL

void *

CUBLASLT_MATMUL_DESC_FAST_ACCUMFlag for managing FP8 fast ac-
cumulation mode. When en-
abled, problem execution might
be faster but at the cost of
lower accuracy because inter-
mediate results will not period-
ically be promoted to a higher
precision. Default value: 0 - fast
accumulation mode is disabled

int8_t

CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPEType of the bias or bias gra-
dient vector in the device
memory. Bias case: see
CUBLASLT_EPILOGUE_BIAS.
If unset (or set to the default
value of -1), the bias vector
elements are the same type as
the elements of the output ma-
trix (Dtype) with the following
exceptions:

▶ IMMA kernels with com-
puteType=CUDA_R_32I
and Ctype=CUDA_R_8I
where the bias vec-
tor elements are the
same type as alpha, beta
(CUBLASLT_MATMUL_DESC_SCALE_TYPE=CUDA_R_32F)

▶ For FP8 kernels
with an output type
of CUDA_R_32F,
CUDA_R_8F_E4M3 or
CUDA_R_8F_E5M2. See
cublasLtMatmul() formore
details.

Default value: -1

int32_t based on cudaDataType

CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_IN_COUNTERS_POINTERPointer to a device array of in-
put atomic counters consumed
by a matmul. When a counter
reaches zero, computation of
the corresponding chunk of the
output tensor is allowed to
start. Default: NULL. See Atom-
ics Synchronization.

int32_t *

CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_OUT_COUNTERS_POINTERPointer to a device array of out-
put atomic counters produced
by a matmul. A matmul ker-
nel sets a counter to zero when
the computations of the cor-
responding chunk of the out-
put tensor have completed. All
the counters must be initialized
to 1 before a matmul kernel is
run. Default: NULL. See Atom-
ics Synchronization.

int32_t *

CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_ROWSNumber of atomic synchroniza-
tion chunks in the row dimen-
sion of the output matrix D.
Each chunk corresponds to a
single atomic counter. Default:
0 (atomics synchronization dis-
abled). See Atomics Synchro-
nization.

int32_t

CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_COLSNumber of atomic synchroniza-
tion chunks in the column di-
mension of the output matrix
D. Each chunk corresponds to a
single atomic counter. Default:
0 (atomics synchronization dis-
abled). See Atomics Synchro-
nization.

int32_t

214 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.3.10. cublasLtMatmulHeuristicResult_t

cublasLtMatmulHeuristicResult_t is a descriptor that holds the configured matrix multiplication algo-
rithm descriptor and its runtime properties.

Member Description

cublasLtMatmu-
lAlgo_t algo

Must be initialized with cublasLtMatmulAlgoInit() if the pref-
erence CUBLASLT_MATMUL_PERF_SEARCH_MODE is set to
CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID. See cublasLtMatmulSearch_t.

size_t workspace-
Size;

Actual size of workspace memory required.

cublasStatus_t
state;

Result status. Other fields are valid only if, after call to cublasLtMatmulAl-
goGetHeuristic(), this member is set to CUBLAS_STATUS_SUCCESS.

float wavesCount; Waves count is a device utilization metric. A wavesCount value of 1.0f sug-
gests that when the kernel is launched it will fully occupy the GPU.

int reserved[4]; Reserved.

5.3.11. cublasLtMatmulInnerShape_t

cublasLtMatmulInnerShape_t is an enumerated type used to configure various aspects of the internal
kernel design. This does not impact the CUDA grid size.

Value Description

CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED Inner shape is undefined.

CUBLASLT_MATMUL_INNER_SHAPE_MMA884 Inner shape is MMA884.

CUBLASLT_MATMUL_INNER_SHAPE_MMA1684 Inner shape is MMA1684.

CUBLASLT_MATMUL_INNER_SHAPE_MMA1688 Inner shape is MMA1688.

CUBLASLT_MATMUL_INNER_SHAPE_MMA16816 Inner shape is MMA16816.

5.3.12. cublasLtMatmulPreference_t

The cublasLtMatmulPreference_t is a pointer to an opaque structure holding the description of the
preferences for cublasLtMatmulAlgoGetHeuristic() configuration. Use cublasLtMatmulPreferenceCre-
ate() to create one instance of the descriptor and cublasLtMatmulPreferenceDestroy() to destroy a
previously created descriptor and release the resources.

5.3. cuBLASLt Datatypes Reference 215

cuBLAS, Release 12.6

5.3.13. cublasLtMatmulPreferenceAttributes_t

cublasLtMatmulPreferenceAttributes_t is an enumerated type used to apply algorithm search pref-
erences while fine-tuning the heuristic function. Use cublasLtMatmulPreferenceGetAttribute() and
cublasLtMatmulPreferenceSetAttribute() to get and set the attribute value of a matmul preference
descriptor.

Value Description Data
Type

CUBLASLT_MATMUL_PREF_SEARCH_MODESearch mode. See cublasLtMatmulSearch_t. Default is
CUBLASLT_SEARCH_BEST_FIT.

uint32_t

CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTESMaximum allowed workspace memory. Default is 0 (no
workspace memory allowed).

uint64_t

CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASKReduction scheme mask. See cublasLtReduction-
Scheme_t. Only algorithm configurations specifying
CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME that
is not masked out by this attribute are allowed. For
example, a mask value of 0x03 will allow only INPLACE
and COMPUTE_TYPE reduction schemes. Default is
CUBLASLT_REDUCTION_SCHEME_MASK (i.e., allows all
reduction schemes).

uint32_t

CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_A_BYTESMinimum buffer alignment for matrix A (in bytes). Se-
lecting a smaller value will exclude algorithms that can
not work with matrix A, which is not as strictly aligned as
the algorithms need. Default is 256 bytes.

uint32_t

CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_B_BYTESMinimum buffer alignment for matrix B (in bytes). Se-
lecting a smaller value will exclude algorithms that can
not work with matrix B, which is not as strictly aligned as
the algorithms need. Default is 256 bytes.

uint32_t

CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_C_BYTESMinimum buffer alignment for matrix C (in bytes). Se-
lecting a smaller value will exclude algorithms that can
not work with matrix C, which is not as strictly aligned
as the algorithms need. Default is 256 bytes.

uint32_t

CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_D_BYTESMinimum buffer alignment for matrix D (in bytes). Se-
lecting a smaller value will exclude algorithms that can
not work with matrix D, which is not as strictly aligned
as the algorithms need. Default is 256 bytes.

uint32_t

CUBLASLT_MATMUL_PREF_MAX_WAVES_COUNTMaximum wave count. See cublasLtMatmulHeuristicRe-
sult_t::wavesCount. Selecting a non-zero value will ex-
clude algorithms that report device utilization higher
than specified. Default is 0.0f.

float

CUBLASLT_MATMUL_PREF_IMPL_MASKNumerical implementation details mask. See cublasLt-
NumericalImplFlags_t. Filters heuristic result to only in-
clude algorithms that use the allowed implementations.
default: uint64_t(-1) (allow everything)

uint64_t

216 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.3.14. cublasLtMatmulSearch_t

cublasLtMatmulSearch_t is an enumerated type that contains the attributes for heuristics search type.

Value Description Data
Type

CUBLASLT_SEARCH_BEST_FIT Request heuristics for the best algorithm for the
given use case.

CUBLASLT_SEARCH_LIMITED_BY_ALGO_IDRequest heuristics only for the pre-configured algo
id.

5.3.15. cublasLtMatmulTile_t

cublasLtMatmulTile_t is an enumerated type used to set the tile size in rows x columns. See also
CUTLASS: Fast Linear Algebra in CUDA C++.

Value Description

CUBLASLT_MATMUL_TILE_UNDEFINED Tile size is undefined.

CUBLASLT_MATMUL_TILE_8x8 Tile size is 8 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x16 Tile size is 8 rows x 16 columns.

CUBLASLT_MATMUL_TILE_16x8 Tile size is 16 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x32 Tile size is 8 rows x 32 columns.

CUBLASLT_MATMUL_TILE_16x16 Tile size is 16 rows x 16 columns.

CUBLASLT_MATMUL_TILE_32x8 Tile size is 32 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x64 Tile size is 8 rows x 64 columns.

CUBLASLT_MATMUL_TILE_16x32 Tile size is 16 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x16 Tile size is 32 rows x 16 columns.

CUBLASLT_MATMUL_TILE_64x8 Tile size is 64 rows x 8 columns.

CUBLASLT_MATMUL_TILE_32x32 Tile size is 32 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x64 Tile size is 32 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x32 Tile size is 64 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x128 Tile size is 32 rows x 128 columns.

CUBLASLT_MATMUL_TILE_64x64 Tile size is 64 rows x 64 columns.

CUBLASLT_MATMUL_TILE_128x32 Tile size is 128 rows x 32 columns.

CUBLASLT_MATMUL_TILE_64x128 Tile size is 64 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x64 Tile size is 128 rows x 64 columns.

continues on next page

5.3. cuBLASLt Datatypes Reference 217

https://www.google.com/url?q=https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/&sa=D&ust=1543610995532000&usg=AFQjCNE3tHlNsXDOnOhbVeeH1uXWQFLzLA

cuBLAS, Release 12.6

Table 2 – continued from previous page

Value Description

CUBLASLT_MATMUL_TILE_64x256 Tile size is 64 rows x 256 columns.

CUBLASLT_MATMUL_TILE_128x128 Tile size is 128 rows x 128 columns.

CUBLASLT_MATMUL_TILE_256x64 Tile size is 256 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x512 Tile size is 64 rows x 512 columns.

CUBLASLT_MATMUL_TILE_128x256 Tile size is 128 rows x 256 columns.

CUBLASLT_MATMUL_TILE_256x128 Tile size is 256 rows x 128 columns.

CUBLASLT_MATMUL_TILE_512x64 Tile size is 512 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x96 Tile size is 64 rows x 96 columns.

CUBLASLT_MATMUL_TILE_96x64 Tile size is 96 rows x 64 columns.

CUBLASLT_MATMUL_TILE_96x128 Tile size is 96 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x160 Tile size is 128 rows x 160 columns.

CUBLASLT_MATMUL_TILE_160x128 Tile size is 160 rows x 128 columns.

CUBLASLT_MATMUL_TILE_192x128 Tile size is 192 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x192 Tile size is 128 rows x 192 columns.

CUBLASLT_MATMUL_TILE_128x96 Tile size is 128 rows x 96 columns.

5.3.16. cublasLtMatmulStages_t

cublasLtMatmulStages_t is an enumerated type used to configure the size and number of sharedmem-
ory buffers where input elements are staged. Number of staging buffers defines kernel’s pipeline
depth.

Value Description

CUBLASLT_MATMUL_STAGES_UNDEFINED Stage size is undefined.

CUBLASLT_MATMUL_STAGES_16x1 Stage size is 16, number of stages is 1.

CUBLASLT_MATMUL_STAGES_16x2 Stage size is 16, number of stages is 2.

CUBLASLT_MATMUL_STAGES_16x3 Stage size is 16, number of stages is 3.

CUBLASLT_MATMUL_STAGES_16x4 Stage size is 16, number of stages is 4.

CUBLASLT_MATMUL_STAGES_16x5 Stage size is 16, number of stages is 5.

CUBLASLT_MATMUL_STAGES_16x6 Stage size is 16, number of stages is 6.

CUBLASLT_MATMUL_STAGES_32x1 Stage size is 32, number of stages is 1.

CUBLASLT_MATMUL_STAGES_32x2 Stage size is 32, number of stages is 2.

CUBLASLT_MATMUL_STAGES_32x3 Stage size is 32, number of stages is 3.

continues on next page

218 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Table 3 – continued from previous page

Value Description

CUBLASLT_MATMUL_STAGES_32x4 Stage size is 32, number of stages is 4.

CUBLASLT_MATMUL_STAGES_32x5 Stage size is 32, number of stages is 5.

CUBLASLT_MATMUL_STAGES_32x6 Stage size is 32, number of stages is 6.

CUBLASLT_MATMUL_STAGES_64x1 Stage size is 64, number of stages is 1.

CUBLASLT_MATMUL_STAGES_64x2 Stage size is 64, number of stages is 2.

CUBLASLT_MATMUL_STAGES_64x3 Stage size is 64, number of stages is 3.

CUBLASLT_MATMUL_STAGES_64x4 Stage size is 64, number of stages is 4.

CUBLASLT_MATMUL_STAGES_64x5 Stage size is 64, number of stages is 5.

CUBLASLT_MATMUL_STAGES_64x6 Stage size is 64, number of stages is 6.

CUBLASLT_MATMUL_STAGES_128x1 Stage size is 128, number of stages is 1.

CUBLASLT_MATMUL_STAGES_128x2 Stage size is 128, number of stages is 2.

CUBLASLT_MATMUL_STAGES_128x3 Stage size is 128, number of stages is 3.

CUBLASLT_MATMUL_STAGES_128x4 Stage size is 128, number of stages is 4.

CUBLASLT_MATMUL_STAGES_128x5 Stage size is 128, number of stages is 5.

CUBLASLT_MATMUL_STAGES_128x6 Stage size is 128, number of stages is 6.

CUBLASLT_MATMUL_STAGES_32x10 Stage size is 32, number of stages is 10.

CUBLASLT_MATMUL_STAGES_8x4 Stage size is 8, number of stages is 4.

CUBLASLT_MATMUL_STAGES_16x10 Stage size is 16, number of stages is 10.

CUBLASLT_MATMUL_STAGES_8x5 Stage size is 8, number of stages is 5.

CUBLASLT_MATMUL_STAGES_8x3 Stage size is 8, number of stages is 3.

CUBLASLT_MATMUL_STAGES_8xAUTO Stage size is 8, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_16xAUTO Stage size is 16, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_32xAUTO Stage size is 32, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_64xAUTO Stage size is 64, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_128xAUTO Stage size is 128, number of stages is selected automatically.

5.3.17. cublasLtNumericalImplFlags_t

cublasLtNumericalImplFlags_t: a set of bit-flags that can be specified to select implementation details
that may affect numerical behavior of algorithms.

Flags below can be combined using the bit OR operator “|”.

5.3. cuBLASLt Datatypes Reference 219

cuBLAS, Release 12.6

Value Description

CUBLASLT_NUMERICAL_IMPL_FLAGS_FMASpecify that the implementation is based on [H,F,D]FMA
(fused multiply-add) family instructions.

CUBLASLT_NUMERICAL_IMPL_FLAGS_HMMASpecify that the implementation is based on HMMA (ten-
sor operation) family instructions.

CUBLASLT_NUMERICAL_IMPL_FLAGS_IMMASpecify that the implementation is based on IMMA (inte-
ger tensor operation) family instructions.

CUBLASLT_NUMERICAL_IMPL_FLAGS_DMMASpecify that the implementation is based on DMMA (dou-
ble precision tensor operation) family instructions.

CUBLASLT_NUMERICAL_IMPL_FLAGS_TENSOR_OP_MASKMask to filter implementations using any of the above
kinds of tensor operations.

CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_TYPE_MASKMask to filter implementation details about multiply-
accumulate instructions used.

CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_16FSpecify that the implementation’s inner dot product is us-
ing half precision accumulator.

CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32FSpecify that the implementation’s inner dot product is us-
ing single precision accumulator.

CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_64FSpecify that the implementation’s inner dot product is us-
ing double precision accumulator.

CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32ISpecify that the implementation’s inner dot product is us-
ing 32 bit signed integer precision accumulator.

CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_TYPE_MASKMask to filter implementation details about accumulator
used.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16FSpecify that the implementation’s inner dot product
multiply-accumulate instruction is using half-precision in-
puts.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16BFSpecify that the implementation’s inner dot product
multiply-accumulate instruction is using bfloat16 inputs.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_TF32Specify that the implementation’s inner dot product
multiply-accumulate instruction is using TF32 inputs.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_32FSpecify that the implementation’s inner dot product
multiply-accumulate instruction is using single-precision
inputs.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_64FSpecify that the implementation’s inner dot product
multiply-accumulate instruction is using double-precision
inputs.

CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8ISpecify that the implementation’s inner dot product
multiply-accumulate instruction is using 8-bit integer in-
puts.

CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_INPUT_TYPE_MASKMask to filter implementation details about accumulator
input used.

CUBLASLT_NUMERICAL_IMPL_FLAGS_GAUSSIANSpecify that the implementation applies Gauss complex-
ity reduction algorithm to reduce arithmetic complexity
of the complex matrix multiplication problem

220 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.3.18. cublasLtMatrixLayout_t

The cublasLtMatrixLayout_t is a pointer to an opaque structure holding the description of a matrix
layout. Use cublasLtMatrixLayoutCreate() to create one instance of the descriptor and cublasLtMa-
trixLayoutDestroy() to destroy a previously created descriptor and release the resources.

5.3.19. cublasLtMatrixLayoutAttribute_t

cublasLtMatrixLayoutAttribute_t is a descriptor structure containing the attributes that define the
details of the matrix operation. Use cublasLtMatrixLayoutGetAttribute() and cublasLtMatrixLayoutSe-
tAttribute() to get and set the attribute value of a matrix layout descriptor.

5.3. cuBLASLt Datatypes Reference 221

cuBLAS, Release 12.6

Attribute Name Description Data Type

CUBLASLT_MATRIX_LAYOUT_TYPESpecifies the data precision
type. See cudaDataType_t.

uint32_t

CUBLASLT_MATRIX_LAYOUT_ORDERSpecifies the memory or-
der of the data of the
matrix. Default value is
CUBLASLT_ORDER_COL. See
cublasLtOrder_t .

int32_t

CUBLASLT_MATRIX_LAYOUT_ROWSDescribes the number of rows
in thematrix. Normally only val-
ues that can be expressed as
int32_t are supported.

uint64_t

CUBLASLT_MATRIX_LAYOUT_COLSDescribes the number of
columns in the matrix. Nor-
mally only values that can be
expressed as int32_t are
supported.

uint64_t

CUBLASLT_MATRIX_LAYOUT_LD The leading dimen-
sion of the matrix. For
CUBLASLT_ORDER_COL this
is the stride (in elements)
of matrix column. See also
cublasLtOrder_t.

▶ Currently only non-
negative values are
supported.

▶ Must be large enough so
that matrix memory loca-
tions are not overlapping
(e.g., greater or equal to
CUBLASLT_MATRIX_LAYOUT_ROWS
in case of
CUBLASLT_ORDER_COL).

int64_t

CUBLASLT_MATRIX_LAYOUT_BATCH_COUNTNumber of matmul opera-
tions to perform in the batch.
Default value is 1. See also
CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT
in cublasLtMatmulAlgoCapAt-
tributes_t.

int32_t

CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSETStride (in elements) to the
next matrix for the strided
batch operation. Default
value is 0. When ma-
trix type is planar-complex
(CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET
!= 0), batch stride is inter-
preted by cublasLtMatmul()
in number of real valued sub-
elements. E.g. for data of type
CUDA_C_16F, offset of 1024B
is encoded as a stride of value
512 (since each element of the
real and imaginary matrices
is a 2B (16bit) floating point
type). NOTE: A bug in cublasLt-
MatrixTransform() causes it to
interpret the batch stride for
a planar-complex matrix as if
it was specified in number of
complex elements. Therefore
an offset of 1024B must be en-
coded as stride value 256 when
calling cublasLtMatrixTrans-
form() (each complex element
is 4B with real and imaginary
values 2B each). This behavior
is expected to be corrected in
the next major cuBLAS version.

int64_t

CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSETStride (in bytes) to the imagi-
nary plane for planar-complex
layout. Default value is 0, in-
dicating that the layout is reg-
ular (real and imaginary parts
of complex numbers are inter-
leaved in memory for each ele-
ment).

int64_t

222 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.3.20. cublasLtMatrixTransformDesc_t

The cublasLtMatrixTransformDesc_t is a pointer to an opaque structure holding the description of a
matrix transformation operation. Use cublasLtMatrixTransformDescCreate() to create one instance of
the descriptor and cublasLtMatrixTransformDescDestroy() to destroy a previously created descriptor
and release the resources.

5.3.21. cublasLtMatrixTransformDescAttributes_t

cublasLtMatrixTransformDescAttributes_t is a descriptor structure containing the attributes that de-
fine the specifics of the matrix transform operation. Use cublasLtMatrixTransformDescGetAttribute()
and cublasLtMatrixTransformDescSetAttribute() to set the attribute value of a matrix transform de-
scriptor.

Transform Attribute Name Description Data
Type

CUBLASLT_MATRIX_TRANSFORM_DESC_SCALE_TYPEScale type. Inputs are converted to the scale type for
scaling and summation, and results are then converted
to the output type to store in the memory. For the sup-
ported data types see cudaDataType_t.

int32_t

CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODESpecifies the scalars alpha and beta are passed by refer-
encewhether on the host or on the device. Default value
is: CUBLASLT_POINTER_MODE_HOST (i.e., on the host).
See cublasLtPointerMode_t.

int32_t

CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSASpecifies the type of operation that should be per-
formed on the matrix A. Default value is: CUBLAS_OP_N
(i.e., non-transpose operation). See cublasOperation_t.

int32_t

CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSBSpecifies the type of operation that should be per-
formed on the matrix B. Default value is: CUBLAS_OP_N
(i.e., non-transpose operation). See cublasOperation_t.

int32_t

5.3. cuBLASLt Datatypes Reference 223

cuBLAS, Release 12.6

5.3.22. cublasLtOrder_t

cublasLtOrder_t is an enumerated type used to indicate the data ordering of the matrix.

Value Data Order Description

CUBLASLT_ORDER_COL Data is ordered in column-major format. The leading dimension is the
stride (in elements) to the beginning of next column in memory.

CUBLASLT_ORDER_ROW Data is ordered in row-major format. The leading dimension is the stride
(in elements) to the beginning of next row in memory.

CUBLASLT_ORDER_COL32 Data is ordered in column-major ordered tiles of 32 columns. The lead-
ing dimension is the stride (in elements) to the beginning of next group
of 32-columns. For example, if the matrix has 33 columns and 2 rows,
then the leading dimension must be at least (32) * 2 = 64.

CUBLASLT_ORDER_COL4_4R2_8CData is ordered in column-major ordered tiles of composite tiles with
total 32 columns and 8 rows. A tile is composed of interleaved inner
tiles of 4 columns within 4 even or odd rows in an alternating pattern.
The leading dimension is the stride (in elements) to the beginning of the
first 32 column x 8 row tile for the next 32-wide group of columns. For
example, if the matrix has 33 columns and 1 row, the leading dimension
must be at least (32 * 8) * 1 = 256.

CUBLASLT_ORDER_COL32_2R_4R4Data is ordered in column-major ordered tiles of composite tiles with
total 32 columns ands 32 rows. Element offset within the tile is calcu-
lated as (((row%8)/2*4+row/8)*2+row%2)*32+col. Leading dimension is
the stride (in elements) to the beginning of the first 32 column x 32 row
tile for the next 32-wide group of columns. E.g. ifmatrix has 33 columns
and 1 row, ld must be at least (32*32)*1 = 1024.

5.3.23. cublasLtPointerMode_t

cublasLtPointerMode_t is an enumerated type used to set the pointer mode for the scaling factors
alpha and beta.

224 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Value Description

CUBLASLT_POINTER_MODE_HOST =
CUBLAS_POINTER_MODE_HOST

Matches CUBLAS_POINTER_MODE_HOST, and the
pointer targets a single value host memory.

CUBLASLT_POINTER_MODE_DEVICE =
CUBLAS_POINTER_MODE_DEVICE

Matches CUBLAS_POINTER_MODE_DEVICE, and the
pointer targets a single value device memory.

CUBLASLT_POINTER_MODE_DEVICE_VECTOR
= 2

Pointers target device memory vectors of length equal
to the number of rows of matrix D.

CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO
= 3

alpha pointer targets a devicememory vector of length
equal to the number of rows of matrix D, and beta is
zero.

CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST
= 4

alpha pointer targets a devicememory vector of length
equal to the number of rows of matrix D, and beta is a
single value in host memory.

5.3.24. cublasLtPointerModeMask_t

cublasLtPointerModeMask_t is an enumerated type used to define and query the pointer mode capa-
bility.

Value Description

CUBLASLT_POINTER_MODE_MASK_HOST
= 1

See CUBLASLT_POINTER_MODE_HOST in cublasLt-
PointerMode_t.

CUBLASLT_POINTER_MODE_MASK_DEVICE
= 2

See CUBLASLT_POINTER_MODE_DEVICE in cublasLt-
PointerMode_t.

CUBLASLT_POINTER_MODE_MASK_DEVICE_VECTOR
= 4

See CUBLASLT_POINTER_MODE_DEVICE_VECTOR in
cublasLtPointerMode_t

CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_ZERO
= 8

SeeCUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO
in cublasLtPointerMode_t

CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_HOST
= 16

SeeCUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST
in cublasLtPointerMode_t

5.3.25. cublasLtReductionScheme_t

cublasLtReductionScheme_t is an enumerated type used to specify a reduction scheme for the por-
tions of the dot-product calculated in parallel (i.e., “split - K”).

5.3. cuBLASLt Datatypes Reference 225

cuBLAS, Release 12.6

Value Description

CUBLASLT_REDUCTION_SCHEME_NONEDo not apply reduction. The dot-product will be performed in
one sequence.

CUBLASLT_REDUCTION_SCHEME_INPLACEReduction is performed “in place” using the output buffer, parts
are added up in the output data type. Workspace is only used
for counters that guarantee sequentiality.

CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPEReduction done out of place in a user-provided workspace. The
intermediate results are stored in the compute type in the
workspace and reduced in a separate step.

CUBLASLT_REDUCTION_SCHEME_OUTPUT_TYPEReduction done out of place in a user-provided workspace.
The intermediate results are stored in the output type in the
workspace and reduced in a separate step.

CUBLASLT_REDUCTION_SCHEME_MASKAllows all reduction schemes.

5.4. cuBLASLt API Reference

5.4.1. cublasLtCreate()

cublasStatus_t
cublasLtCreate(cublasLtHandle_t *lighthandle)

This function initializes the cuBLASLt library and creates a handle to an opaque structure holding the
cuBLASLt library context. It allocates light hardware resources on the host and device, and must be
called prior to making any other cuBLASLt library calls.

The cuBLASLt library context is tied to the current CUDA device. To use the library onmultiple devices,
one cuBLASLt handle should be created for each device.

Parameters:

Parame-
ter

Mem-
ory

Input / Out-
put

Description

lightHandle Output Pointer to the allocated cuBLASLt handle for the created
cuBLASLt context.

Returns:

226 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_SUCCESS The allocation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The cuBLASLt library was not initialized. This
usually happens:

▶ when cublasLtCreate() is not called first
▶ an error in the CUDA Runtime API called by

the cuBLASLt routine, or
▶ an error in the hardware setup.

CUBLAS_STATUS_ALLOC_FAILED Resource allocation failed inside the cuBLASLt li-
brary. This is usually caused by a cudaMalloc()
failure.
To correct: prior to the function call, deallocate
the previously allocatedmemory asmuch as pos-
sible.

CUBLAS_STATUS_INVALID_VALUE lighthandle == NULL

See cublasStatus_t for a complete list of valid return codes.

5.4.2. cublasLtDestroy()

cublasStatus_t
cublasLtDestroy(cublasLtHandle_t lightHandle)

This function releases hardware resources used by the cuBLASLt library. This function is usually the
last call with a particular handle to the cuBLASLt library. Because cublasLtCreate() allocates some
internal resources and the release of those resources by calling cublasLtDestroy() will implicitly call
cudaDeviceSynchronize(), it is recommended to minimize the number of times these functions
are called.

Parameters:

Parameter Memory Input / Output Description

lightHandle Input Pointer to the cuBLASLt handle to be destroyed.

Returns:

Return Value Meaning

CUBLAS_STATUS_SUCCESS The cuBLASLt context was successfully destroyed.

CUBLAS_STATUS_NOT_INITIALIZED The cuBLASLt library was not initialized.

CUBLAS_STATUS_INVALID_VALUE lightHandle == NULL

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 227

cuBLAS, Release 12.6

5.4.3. cublasLtDisableCpuInstructionsSetMask()

unsigned cublasLtDisableCpuInstructionsSetMask(unsigned mask);

Instructs cuBLASLt library to not use CPU instructions specified by the flags in the mask. The function
takes precedence over the CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK environment variable.

Parameters: mask – the flags combined with bitwise OR(|) operator that specify which CPU instruc-
tions should not be used.

Supported flags:

Value Description

0x1 x86-64 AVX512 ISA.

Returns: the previous value of the mask.

5.4.4. cublasLtGetCudartVersion()

size_t cublasLtGetCudartVersion(void);

This function returns the version number of the CUDA Runtime library.

Parameters: None.

Returns:size_t - The version number of the CUDA Runtime library.

5.4.5. cublasLtGetProperty()

cublasStatus_t cublasLtGetProperty(libraryPropertyType type, int *value);

This function returns the value of the requested property by writing it to the memory location pointed
to by the value parameter.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

type Input Of the type libraryPropertyType, whose value is requested from
the property. See libraryPropertyType_t.

value Output Pointer to the host memory location where the requested informa-
tion should be written.

Returns:

228 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Return Value Meaning

CUBLAS_STATUS_SUCCESS The requestedlibraryPropertyType informa-
tion is successfully written at the provided ad-
dress.

CUBLAS_STATUS_INVALID_VALUE
▶ If invalid value of the type input argument

or
▶ value == NULL

See cublasStatus_t for a complete list of valid return codes.

5.4.6. cublasLtGetStatusName()

const char* cublasLtGetStatusName(cublasStatus_t status);

Returns the string representation of a given status.

Parameters: cublasStatus_t - the status.

Returns: const char* - the NULL-terminated string.

5.4.7. cublasLtGetStatusString()

const char* cublasLtGetStatusString(cublasStatus_t status);

Returns the description string for a given status.

Parameters: cublasStatus_t - the status.

Returns: const char* - the NULL-terminated string.

5.4.8. cublasLtHeuristicsCacheGetCapacity()

cublasStatus_t cublasLtHeuristicsCacheGetCapacity(size_t* capacity);

Returns the Heuristics Cache capacity.

Parameters:

Parameter Description

capacity The pointer to the returned capacity value.

Returns:

5.4. cuBLASLt API Reference 229

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_SUCCESS The capacity was successfully written.

CUBLAS_STATUS_INVALID_VALUE The capacity was successfully set.

5.4.9. cublasLtHeuristicsCacheSetCapacity()

cublasStatus_t cublasLtHeuristicsCacheSetCapacity(size_t capacity);

Sets the Heuristics Cache capacity. Set the capacity to 0 to disable the heuristics cache.

This function takes precedence over CUBLASLT_HEURISTICS_CACHE_CAPACITY environment vari-
able.

Parameters:

Parameter Description

capacity The desirable heuristics cache capacity.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS The capacity was successfully set.

5.4.10. cublasLtGetVersion()

size_t cublasLtGetVersion(void);

This function returns the version number of cuBLASLt library.

Parameters: None.

Returns:size_t - The version number of cuBLASLt library.

5.4.11. cublasLtLoggerSetCallback()

cublasStatus_t cublasLtLoggerSetCallback(cublasLtLoggerCallback_t callback);

Experimental: This function sets the logging callback function.

Parameters:

230 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Parame-
ter

Mem-
ory

Input / Out-
put

Description

callback Input Pointer to a callback function. See cublasLtLoggerCall-
back_t.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the callback function was successfully set.

See cublasStatus_t for a complete list of valid return codes.

5.4.12. cublasLtLoggerSetFile()

cublasStatus_t cublasLtLoggerSetFile(FILE* file);

Experimental: This function sets the logging output file. Note: once registered using this function call,
the provided file handle must not be closed unless the function is called again to switch to a different
file handle.

Parameters:

Parameter Memory Input / Output Description

file Input Pointer to an open file. File should have write permission.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If logging file was successfully set.

See cublasStatus_t for a complete list of valid return codes.

5.4.13. cublasLtLoggerOpenFile()

cublasStatus_t cublasLtLoggerOpenFile(const char* logFile);

Experimental: This function opens a logging output file in the given path.

Parameters:

Parameter Memory Input / Output Description

logFile Input Path of the logging output file.

5.4. cuBLASLt API Reference 231

cuBLAS, Release 12.6

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the logging file was successfully opened.

See cublasStatus_t for a complete list of valid return codes.

5.4.14. cublasLtLoggerSetLevel()

cublasStatus_t cublasLtLoggerSetLevel(int level);

Experimental: This function sets the value of the logging level.

Parameters:

Parameter Memory Input / Output Description

level Input Value of the logging level. See cuBLASLt Logging.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUE If the value was not a valid logging level. See cuBLASLt Logging.

CUBLAS_STATUS_SUCCESS If the logging level was successfully set.

See cublasStatus_t for a complete list of valid return codes.

5.4.15. cublasLtLoggerSetMask()

cublasStatus_t cublasLtLoggerSetMask(int mask);

Experimental: This function sets the value of the logging mask.

Parameters:

Parameter Memory Input / Output Description

mask Input Value of the logging mask. See cuBLASLt Logging.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the logging mask was successfully set.

See cublasStatus_t for a complete list of valid return codes.

232 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.4.16. cublasLtLoggerForceDisable()

cublasStatus_t cublasLtLoggerForceDisable();

Experimental: This function disables logging for the entire run.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If logging was successfully disabled.

See cublasStatus_t for a complete list of valid return codes.

5.4.17. cublasLtMatmul()

cublasStatus_t cublasLtMatmul(
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t computeDesc,
const void *alpha,
const void *A,
cublasLtMatrixLayout_t Adesc,
const void *B,
cublasLtMatrixLayout_t Bdesc,
const void *beta,
const void *C,
cublasLtMatrixLayout_t Cdesc,
void *D,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t *algo,
void *workspace,
size_t workspaceSizeInBytes,
cudaStream_t stream);

This function computes the matrix multiplication of matrices A and B to produce the output matrix D,
according to the following operation:

D = alpha*(A*B) + beta*(C),

where A, B, and C are input matrices, and alpha and beta are input scalars.

Note: This function supports both in-place matrix multiplication (C == D and Cdesc == Ddesc)
and out-of-place matrix multiplication (C != D, both matrices must have the same data type, number
of rows, number of columns, batch size, and memory order). In the out-of-place case, the leading
dimension of C can be different from the leading dimension of D. Specifically the leading dimension
of C can be 0 to achieve row or column broadcast. If Cdesc is omitted, this function assumes it to be
equal to Ddesc.

The workspace pointer must be aligned to at least a multiple of 256 bytes. The recommendations on
workspaceSizeInBytes are the same as mentioned in the cublasSetWorkspace() section.

Datatypes Supported:

5.4. cuBLASLt API Reference 233

cuBLAS, Release 12.6

cublasLtMatmul() supports the following computeType, scaleType, Atype/Btype, and Ctype. Footnotes
can be found at the end of this section.

Table 4: Table 1. When A, B, C, and D are Regular Column- or
Row-major Matrices

computeType scale-
Type

Atype/BtypeCtype Bias Type5

CUBLAS_COMPUTE_16F or
CUBLAS_COMPUTE_16F_PEDANTIC

CUDA_R_16FCUDA_R_16FCUDA_R_16FCUDA_R_16F5

CUBLAS_COMPUTE_32I or
CUBLAS_COMPUTE_32I_PEDANTIC

CUDA_R_32ICUDA_R_8ICUDA_R_32INon-default epilogue
not supported.

CUDA_R_32FCUDA_R_8ICUDA_R_8INon-default epilogue
not supported.

CUBLAS_COMPUTE_32F or
CUBLAS_COMPUTE_32F_PEDANTIC

CUDA_R_32FCUDA_R_16BFCUDA_R_16BFCUDA_R_16BF5

CUDA_R_16FCUDA_R_16FCUDA_R_16F5

CUDA_R_8ICUDA_R_32FNon-default epilogue
not supported.

CUDA_R_16BFCUDA_R_32FCUDA_R_32F5

CUDA_R_16FCUDA_R_32FCUDA_R_32F5

CUDA_R_32FCUDA_R_32FCUDA_R_32F5

CUDA_C_32F6CUDA_C_8I6CUDA_C_32F6Non-default epilogue
not supported.

CUDA_C_32F6CUDA_C_32F6

CUBLAS_COMPUTE_32F_FAST_16F or
CUBLAS_COMPUTE_32F_FAST_16BF or
CUBLAS_COMPUTE_32F_FAST_TF32

CUDA_R_32FCUDA_R_32FCUDA_R_32FCUDA_R_32F?

CUDA_C_32F6CUDA_C_32F6CUDA_C_32F6Non-default epilogue
not supported.

CUBLAS_COMPUTE_64F or
CUBLAS_COMPUTE_64F_PEDANTIC

CUDA_R_64FCUDA_R_64FCUDA_R_64FCUDA_R_64F?

CUDA_C_64F6CUDA_C_64F6CUDA_C_64F6Non-default epilogue
not supported.

To use IMMA kernels, one of the following sets of requirements, with the first being the preferred one,
must be met:

1. Using a regular data ordering:

▶ All matrix pointers must be 4-byte aligned. For even better performance, this condition
should hold with 16 instead of 4.

▶ Leading dimensions of matrices A, B, C must be multiples of 4.

▶ Only the “TN” format is supported - A must be transposed and B non-transposed.

5 ReLU, dReLu, GELU, dGELU and Bias epilogue modes (see CUBLASLT_MATMUL_DESC_EPILOGUE in cublasLtMatmulDescAt-
tributes_t) are not supported when D matrix memory order is defined as CUBLASLT_ORDER_ROW. For best performance when
using the bias vector, specify zero beta and set pointer mode to CUBLASLT_POINTER_MODE_HOST.

6 Use of CUBLAS_ORDER_ROW together with CUBLAS_OP_C (Hermitian operator) is not supported unless all of A, B, C, and D
matrices use the CUBLAS_ORDER_ROW ordering.

234 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

▶ Pointermode canbeCUBLASLT_POINTER_MODE_HOST,CUBLASLT_POINTER_MODE_DEVICE
or CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST. With the latter mode,
the kernels support the CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE at-
tribute.

▶ Dimensions m and k must be multiples of 4.

2. Using the IMMA-specific data ordering on Ampere or Turing (but not Hopper) architecture -
CUBLASLT_ORDER_COL32` for matrices A, C, D, and CUBLASLT_ORDER_COL4_4R2_8C (on Tur-
ing or Ampere architecture) or CUBLASLT_ORDER_COL32_2R_4R4 (on Ampere architecture) for
matrix B:

▶ Leading dimensions of matrices A, B, C must fulfill conditions specific to the memory order-
ing (see cublasLtOrder_t).

▶ Matmul descriptor must specify CUBLAS_OP_T on matrix B and CUBLAS_OP_N (default) on
matrix A and C.

▶ If scaleType CUDA_R_32I is used, the only supported values for alpha and beta are 0 or 1.

▶ Pointermode canbeCUBLASLT_POINTER_MODE_HOST,CUBLASLT_POINTER_MODE_DEVICE,
CUBLASLT_POINTER_MODE_DEVICE_VECTOR orCUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO.
These kernels do not support CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE.

▶ Only the “NT” format is supported - A must be transposed and B non-transposed.

Table 5: Table 2. When A, B, C, and D Use Layouts for IMMA

computeType scaleType Atype/BtypeCtype Bias Type

CUBLAS_COMPUTE_32I or
CUBLAS_COMPUTE_32I_PEDANTIC

CUDA_R_32ICUDA_R_8I CUDA_R_32INon-default epiloguenot sup-
ported.

CUDA_R_32FCUDA_R_8I CUDA_R_8I CUDA_R_32F

To use FP8 kernels, the following set of requirements must be satisfied:

▶ All matrix dimensionsmust meet the optimal requirements listed in Tensor Core Usage (i.e. point-
ers and matrix dimension must support 16-byte alignment).

▶ A must be transposed and B non-transposed (The “TN” format).

▶ The compute type must be CUBLAS_COMPUTE_32F.

▶ The scale type must be CUDA_R_32F.

See the table below when using FP8 kernels:

5.4. cuBLASLt API Reference 235

cuBLAS, Release 12.6

Table 6: Table 3. When A, B, C, and D Use Layouts for FP8

AType BType CType DType Bias Type

CUDA_R_8F_E4M3 CUDA_R_8F_E4M3 CUDA_R_16BF CUDA_R_16BF CUDA_R_16BF?

CUDA_R_8F_E4M3 CUDA_R_16BF?

CUDA_R_16F CUDA_R_8F_E4M3 CUDA_R_16F?

CUDA_R_16F CUDA_R_16F?

CUDA_R_32F CUDA_R_32F CUDA_R_16BF?

CUDA_R_8F_E5M2 CUDA_R_16BF CUDA_R_16BF CUDA_R_16BF?

CUDA_R_8F_E4M3 CUDA_R_16BF?

CUDA_R_8F_E5M2 CUDA_R_16BF?

CUDA_R_16F CUDA_R_8F_E4M3 CUDA_R_16F?

CUDA_R_8F_E5M2 CUDA_R_16F?

CUDA_R_16F CUDA_R_16F?

CUDA_R_32F CUDA_R_32F CUDA_R_16BF?

CUDA_R_8F_E5M2 CUDA_R_8F_E4M3 CUDA_R_16BF CUDA_R_16BF CUDA_R_16BF?

CUDA_R_8F_E4M3 CUDA_R_16BF?

CUDA_R_8F_E5M2 CUDA_R_16BF?

CUDA_R_16F CUDA_R_8F_E4M3 CUDA_R_16F?

CUDA_R_8F_E5M2 CUDA_R_16F?

CUDA_R_16F CUDA_R_16F?

CUDA_R_32F CUDA_R_32F CUDA_R_16BF?

And finally, see below table when A,B,C,D are planar-complex matrices
(CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET != 0, see cublasLtMatrixLayoutAttribute_t) to
make use of mixed precision tensor core acceleration.

Table 7: Table 4. When A, B, C, and D are Planar-Complex Ma-
trices

computeType scaleType Atype/Btype Ctype

CUBLAS_COMPUTE_32F CUDA_C_32F CUDA_C_16FPage 234, 6 CUDA_C_16FPage 234, 6

CUDA_C_32FPage 234, 6

CUDA_C_16BFPage 234, 6 CUDA_C_16BFPage 234, 6

CUDA_C_32FPage 234, 6

NOTES:

Parameters:

236 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Parameter Memory Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See cublasLtHandle_t.

computeDesc Input Handle to a previously createdmatrixmultiplication descrip-
tor of type cublasLtMatmulDesc_t.

alpha, beta Device
or host

Input Pointers to the scalars used in the multiplication.

A, B, and C Device Input Pointers to the GPU memory associated with the corre-
sponding descriptors Adesc, Bdesc and Cdesc.

Adesc, Bdesc
and Cdesc.

Input Handles to the previous created descriptors of the type
cublasLtMatrixLayout_t.

D Device Output Pointer to the GPU memory associated with the descriptor
Ddesc.

Ddesc Input Handle to the previous created descriptor of the type
cublasLtMatrixLayout_t.

algo Input Handle for matrix multiplication algorithm to be used. See
cublasLtMatmulAlgo_t. When NULL, an implicit heuritics
query with default search preferences will be performed to
determine actual algorithm to use.

workspace Device Pointer to the workspace buffer allocated in the GPU mem-
ory. Must be 256B aligned (i.e. lowest 8 bits of addressmust
be 0).

workspace-
SizeInBytes

Input Size of the workspace.

stream Host Input The CUDA stream where all the GPU work will be submitted.

Returns:

Return Value Description

CUBLAS_STATUS_NOT_INITIALIZEDIf cuBLASLt handle has not been initialized.

CUBLAS_STATUS_INVALID_VALUEIf the parameters are unexpectedly NULL, in conflict or in an impossi-
ble configuration. For example, when workspaceSizeInBytes is less
than workspace required by the configured algo.

CUBLAS_STATUS_NOT_SUPPORTEDIf the current implementation on the selected device doesn’t support
the configured operation.

CUBLAS_STATUS_ARCH_MISMATCHIf the configured operation cannot be run using the selected device.

CUBLAS_STATUS_EXECUTION_FAILEDIf CUDA reported an execution error from the device.

CUBLAS_STATUS_SUCCESS If the operation completed successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 237

cuBLAS, Release 12.6

5.4.18. cublasLtMatmulAlgoCapGetAttribute()

cublasStatus_t cublasLtMatmulAlgoCapGetAttribute(
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoCapAttributes_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried capability attribute for an initialized cublasLtMatmu-
lAlgo_t descriptor structure. The capability attribute value is retrieved from the enumerated type
cublasLtMatmulAlgoCapAttributes_t.

For example, to get list of supported Tile IDs:

cublasLtMatmulTile_t tiles[CUBLASLT_MATMUL_TILE_END];
size_t num_tiles, size_written;
if (cublasLtMatmulAlgoCapGetAttribute(algo, CUBLASLT_ALGO_CAP_TILE_IDS, tiles,�
↪→sizeof(tiles), &size_written) == CUBLAS_STATUS_SUCCESS) {
num_tiles = size_written ∕ sizeof(tiles[0]);}

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

algo Input Pointer to the previously created opaque structure holding the ma-
trix multiply algorithm descriptor. See cublasLtMatmulAlgo_t.

attr Input The capability attributewhose valuewill be retrieved by this function.
See cublasLtMatmulAlgoCapAttributes_t.

buf Output The attribute value returned by this function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

238 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

See cublasStatus_t for a complete list of valid return codes.

5.4.19. cublasLtMatmulAlgoCheck()

cublasStatus_t cublasLtMatmulAlgoCheck(
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulHeuristicResult_t *result);

This function performs the correctness check on the matrix multiply algorithm descriptor for the ma-
trix multiply operation cublasLtMatmul() function with the given input matrices A, B and C, and the
output matrix D. It checks whether the descriptor is supported on the current device, and returns the
result containing the required workspace and the calculated wave count.

Note: CUBLAS_STATUS_SUCCESS doesn’t fully guarantee that the algo will run. The algo will fail if,
for example, the buffers are not correctly aligned. However, if cublasLtMatmulAlgoCheck() fails, the
algo will not run.

Parameters:

Parameter Mem-
ory

Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See cublasLtHandle_t.

operationDesc Input Handle to a previously created matrix multiplication de-
scriptor of type cublasLtMatmulDesc_t.

Adesc, Bdesc,
Cdesc, and Ddesc

Input Handles to the previously created matrix layout descriptors
of the type cublasLtMatrixLayout_t.

algo Input Descriptor which specifies which matrix multiplication al-
gorithm should be used. See cublasLtMatmulAlgo_t. May
point to result->algo.

result Output Pointer to the structure holding the results returned by this
function. The results comprise of the required workspace
and the calculated wave count. The algo field is never up-
dated. See cublasLtMatmulHeuristicResult_t.

Returns:

5.4. cuBLASLt API Reference 239

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf matrix layout descriptors or the operation descriptor do not match
the algo descriptor.

CUBLAS_STATUS_NOT_SUPPORTEDIf the algo configuration or data type combination is not currently sup-
ported on the given device.

CUBLAS_STATUS_ARCH_MISMATCHIf the algo configuration cannot be run using the selected device.

CUBLAS_STATUS_SUCCESS If the check was successful.

See cublasStatus_t for a complete list of valid return codes.

5.4.20. cublasLtMatmulAlgoConfigGetAttribute()

cublasStatus_t cublasLtMatmulAlgoConfigGetAttribute(
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried configuration attribute for an initialized cublasLtMatmu-
lAlgo_t descriptor. The configuration attribute value is retrieved from the enumerated type cublasLt-
MatmulAlgoConfigAttributes_t.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

algo Input Pointer to the previously created opaque structure holding the ma-
trix multiply algorithm descriptor. See cublasLtMatmulAlgo_t.

attr Input The configuration attributewhose valuewill be retrieved by this func-
tion. See cublasLtMatmulAlgoConfigAttributes_t.

buf Output The attribute value returned by this function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

240 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See cublasStatus_t for a complete list of valid return codes.

5.4.21. cublasLtMatmulAlgoConfigSetAttribute()

cublasStatus_t cublasLtMatmulAlgoConfigSetAttribute(
cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified configuration attribute for an initialized cublasLtMatmu-
lAlgo_t descriptor. The configuration attribute is an enumerant of the type cublasLtMatmulAlgoConfi-
gAttributes_t.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

algo Input Pointer to the previously created opaque structure holding the ma-
trix multiply algorithm descriptor. See cublasLtMatmulAlgo_t.

attr Input The configuration attribute whose value will be set by this function.
See cublasLtMatmulAlgoConfigAttributes_t.

buf Input The value to which the configuration attribute should be set.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf buf is NULL or sizeInBytes doesn’t match the size of the internal
storage for the selected attribute.

CUBLAS_STATUS_SUCCESSIf the attribute was set successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 241

cuBLAS, Release 12.6

5.4.22. cublasLtMatmulAlgoGetHeuristic()

cublasStatus_t cublasLtMatmulAlgoGetHeuristic(
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
cublasLtMatmulPreference_t preference,
int requestedAlgoCount,
cublasLtMatmulHeuristicResult_t heuristicResultsArray[]
int *returnAlgoCount);

This function retrieves the possible algorithms for the matrix multiply operation cublasLtMatmul()
function with the given input matrices A, B and C, and the output matrix D. The output is placed
in heuristicResultsArray[] in the order of increasing estimated compute time.

Parameters:

Parameter Mem-
ory

Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See cublasLtHandle_t.

operationDesc Input Handle to a previously created matrix multiplication de-
scriptor of type cublasLtMatmulDesc_t.

Adesc, Bdesc,
Cdesc, and Ddesc

Input Handles to the previously created matrix layout descriptors
of the type cublasLtMatrixLayout_t.

preference Input Pointer to the structure holding the heuristic search pref-
erences descriptor. See cublasLtMatmulPreference_t.

requestedAlgo-
Count

Input Size of the heuristicResultsArray (in elements). This is
the requested maximum number of algorithms to return.

heuristicResultsAr-
ray[]

Output Array containing the algorithm heuristics and associated
runtime characteristics, returned by this function, in the or-
der of increasing estimated compute time.

returnAlgoCount Output Number of algorithms returned by this function. This is the
number of heuristicResultsArray elements written.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf requestedAlgoCount is less or equal to zero.

CUBLAS_STATUS_NOT_SUPPORTEDIf no heuristic function available for current configuration.

CUBLAS_STATUS_SUCCESSIf query was successful. Inspect heuristicResultsArray[0 to
(returnAlgoCount -1)].state for the status of the results.

See cublasStatus_t for a complete list of valid return codes.

242 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Note: This function may load some kernels using CUDA Driver API which may fail when there is no
available GPU memory. Do not allocate the entire VRAM before running cublasLtMatmulAlgoGetH-
euristic().

5.4.23. cublasLtMatmulAlgoGetIds()

cublasStatus_t cublasLtMatmulAlgoGetIds(
cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int requestedAlgoCount,
int algoIdsArray[],
int *returnAlgoCount);

This function retrieves the IDs of all the matrix multiply algorithms that are valid, and can potentially
be run by the cublasLtMatmul() function, for given types of the input matrices A, B and C, and of the
output matrix D.

Note: The IDs are returned in no particular order. To make sure the best possible algo is contained in
the list, make requestedAlgoCount large enough to receive the full list. The list is guaranteed to be
full if returnAlgoCount < requestedAlgoCount.

Parameters:

Parameter Mem-
ory

Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the
cuBLASLt context. See cublasLtHandle_t.

computeType, scaleType,
Atype, Btype, Ctype, and
Dtype

Inputs Data types of the computation type, scaling fac-
tors and of the operand matrices. See cuda-
DataType_t.

requestedAlgoCount Input Number of algorithms requested. Must be > 0.

algoIdsArray[] Output Array containing the algorithm IDs returned by this
function.

returnAlgoCount Output Number of algorithms actually returned by this
function.

Returns:

5.4. cuBLASLt API Reference 243

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf requestedAlgoCount is less or equal to zero.

CUBLAS_STATUS_SUCCESS If querywas successful. Inspect returnAlgoCount to get actual num-
ber of IDs available.

See cublasStatus_t for a complete list of valid return codes.

5.4.24. cublasLtMatmulAlgoInit()

cublasStatus_t cublasLtMatmulAlgoInit(
cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int algoId,
cublasLtMatmulAlgo_t *algo);

This function initializes the matrix multiply algorithm structure for the cublasLtMatmul() , for a speci-
fied matrix multiply algorithm and input matrices A, B and C, and the output matrix D.

Parameters:

Parameter Mem-
ory

Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See cublasLtHandle_t.

computeType Input Compute type. SeeCUBLASLT_MATMUL_DESC_COMPUTE_TYPE
of cublasLtMatmulDescAttributes_t.

scaleType Input Scale type. See CUBLASLT_MATMUL_DESC_SCALE_TYPEof
cublasLtMatmulDescAttributes_t. Usually same as com-
puteType.

Atype, Btype,
Ctype, and Dtype

Input Datatype precision for the input and output matrices. See
cudaDataType_t .

algoId Input Specifies the algorithm being initialized. Should be a valid
algoId returned by the cublasLtMatmulAlgoGetIds() func-
tion.

algo Input Pointer to the opaque structure to be initialized. See
cublasLtMatmulAlgo_t.

Returns:

244 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_INVALID_VALUE If algo is NULL or algoId is outside the recognized range.

CUBLAS_STATUS_NOT_SUPPORTED If algoId is not supported for given combination of data
types.

CUBLAS_STATUS_SUCCESS If the structure was successfully initialized.

See cublasStatus_t for a complete list of valid return codes.

5.4.25. cublasLtMatmulDescCreate()

cublasStatus_t cublasLtMatmulDescCreate(cublasLtMatmulDesc_t *matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);

This function creates a matrix multiply descriptor by allocating the memory needed to hold its opaque
structure.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

mat-
mulDesc

Output Pointer to the structure holding the matrix multiply descriptor cre-
ated by this function. See cublasLtMatmulDesc_t.

com-
pute-
Type

Input Enumerant that specifies the data precision for the matrix multiply
descriptor this function creates. See cublasComputeType_t.

scale-
Type

Input Enumerant that specifies the data precision for the matrix trans-
form descriptor this function creates. See cudaDataType.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 245

cuBLAS, Release 12.6

5.4.26. cublasLtMatmulDescInit()

cublasStatus_t cublasLtMatmulDescInit(cublasLtMatmulDesc_t matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);

This function initializes a matrix multiply descriptor in a previously allocated one.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

mat-
mulDesc

Output Pointer to the structure holding the matrix multiply descriptor ini-
tialized by this function. See cublasLtMatmulDesc_t.

com-
pute-
Type

Input Enumerant that specifies the data precision for the matrix multiply
descriptor this function initializes. See cublasComputeType_t.

scale-
Type

Input Enumerant that specifies the data precision for the matrix trans-
form descriptor this function initializes. See cudaDataType.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.27. cublasLtMatmulDescDestroy()

cublasStatus_t cublasLtMatmulDescDestroy(
cublasLtMatmulDesc_t matmulDesc);

This function destroys a previously created matrix multiply descriptor object.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

mat-
mulDesc

Input Pointer to the structure holding the matrix multiply descriptor that
should be destroyed by this function. See cublasLtMatmulDesc_t.

Returns:

246 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_SUCCESS If operation was successful.

See cublasStatus_t for a complete list of valid return codes.

5.4.28. cublasLtMatmulDescGetAttribute()

cublasStatus_t cublasLtMatmulDescGetAttribute(
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously created matrix mul-
tiply descriptor.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

mat-
mulDesc

Input Pointer to the previously created structure holding thematrix multi-
ply descriptor queried by this function. See cublasLtMatmulDesc_t.

attr Input The attribute that will be retrieved by this function. See cublasLt-
MatmulDescAttributes_t.

buf Output Memory address containing the attribute value retrieved by this
function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

5.4. cuBLASLt API Reference 247

cuBLAS, Release 12.6

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See cublasStatus_t for a complete list of valid return codes.

5.4.29. cublasLtMatmulDescSetAttribute()

cublasStatus_t cublasLtMatmulDescSetAttribute(
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously createdmatrixmultiply
descriptor.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

mat-
mulDesc

Input Pointer to the previously created structure holding thematrix multi-
ply descriptor queried by this function. See cublasLtMatmulDesc_t.

attr Input The attribute that will be set by this function. See cublasLtMat-
mulDescAttributes_t.

buf Input The value to which the specified attribute should be set.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf buf is NULL or sizeInBytes doesn’t match the size of the internal
storage for the selected attribute.

CUBLAS_STATUS_SUCCESSIf the attribute was set successfully.

See cublasStatus_t for a complete list of valid return codes.

248 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.4.30. cublasLtMatmulPreferenceCreate()

cublasStatus_t cublasLtMatmulPreferenceCreate(
cublasLtMatmulPreference_t *pref);

This function creates a matrix multiply heuristic search preferences descriptor by allocating themem-
ory needed to hold its opaque structure.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

pref Output Pointer to the structure holding the matrix multiply preferences de-
scriptor created by this function. See cublasLtMatrixLayout_t.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.31. cublasLtMatmulPreferenceInit()

cublasStatus_t cublasLtMatmulPreferenceInit(
cublasLtMatmulPreference_t pref);

This function initializes a matrix multiply heuristic search preferences descriptor in a previously allo-
cated one.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

pref Output Pointer to the structure holding the matrix multiply preferences de-
scriptor created by this function. See cublasLtMatrixLayout_t.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 249

cuBLAS, Release 12.6

5.4.32. cublasLtMatmulPreferenceDestroy()

cublasStatus_t cublasLtMatmulPreferenceDestroy(
cublasLtMatmulPreference_t pref);

This function destroys a previously created matrix multiply preferences descriptor object.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

pref Input Pointer to the structure holding the matrix multiply preferences de-
scriptor that should be destroyed by this function. See cublasLtMat-
mulPreference_t.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the operation was successful.

See cublasStatus_t for a complete list of valid return codes.

5.4.33. cublasLtMatmulPreferenceGetAttribute()

cublasStatus_t cublasLtMatmulPreferenceGetAttribute(
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously created matrix mul-
tiply heuristic search preferences descriptor.

Parameters:

250 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Param-
eter

Mem-
ory

Input /
Output

Description

pref Input Pointer to the previously created structure holding the matrix multi-
ply heuristic search preferences descriptor queried by this function.
See cublasLtMatmulPreference_t.

attr Input The attribute that will be queried by this function. See cublasLtMat-
mulPreferenceAttributes_t.

buf Output Memory address containing the attribute value retrieved by this
function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See cublasStatus_t for a complete list of valid return codes.

5.4.34. cublasLtMatmulPreferenceSetAttribute()

cublasStatus_t cublasLtMatmulPreferenceSetAttribute(
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously createdmatrixmultiply
preferences descriptor.

Parameters:

5.4. cuBLASLt API Reference 251

cuBLAS, Release 12.6

Param-
eter

Mem-
ory

Input /
Output

Description

pref Input Pointer to the previously created structure holding the matrix mul-
tiply preferences descriptor queried by this function. See cublasLt-
MatmulPreference_t.

attr Input The attribute that will be set by this function. See cublasLtMatmul-
PreferenceAttributes_t.

buf Input The value to which the specified attribute should be set.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf buf is NULL or sizeInBytes doesn’t match the size of the internal
storage for the selected attribute.

CUBLAS_STATUS_SUCCESSIf the attribute was set successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.35. cublasLtMatrixLayoutCreate()

cublasStatus_t cublasLtMatrixLayoutCreate(cublasLtMatrixLayout_t *matLayout,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);

This function creates a matrix layout descriptor by allocating the memory needed to hold its opaque
structure.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

mat-
Layout

Output Pointer to the structure holding the matrix layout descriptor created
by this function. See cublasLtMatrixLayout_t.

type Input Enumerant that specifies the data precision for the matrix layout de-
scriptor this function creates. See cudaDataType.

rows,
cols

Input Number of rows and columns of the matrix.

ld Input The leading dimension of the matrix. In column major layout, this is
the number of elements to jump to reach the next column. Thus ld
>= m (number of rows).

252 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If the memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.36. cublasLtMatrixLayoutInit()

cublasStatus_t cublasLtMatrixLayoutInit(cublasLtMatrixLayout_t matLayout,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);

This function initializes a matrix layout descriptor in a previously allocated one.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

mat-
Layout

Output Pointer to the structure holding the matrix layout descriptor initial-
ized by this function. See cublasLtMatrixLayout_t.

type Input Enumerant that specifies the data precision for the matrix layout de-
scriptor this function initializes. See cudaDataType.

rows,
cols

Input Number of rows and columns of the matrix.

ld Input The leading dimension of the matrix. In column major layout, this is
the number of elements to jump to reach the next column. Thus ld
>= m (number of rows).

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If the memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 253

cuBLAS, Release 12.6

5.4.37. cublasLtMatrixLayoutDestroy()

cublasStatus_t cublasLtMatrixLayoutDestroy(
cublasLtMatrixLayout_t matLayout);

This function destroys a previously created matrix layout descriptor object.

Parameters:

Param-
eter

Mem-
ory

Input /
Output

Description

mat-
Layout

Input Pointer to the structure holding the matrix layout descriptor that
should be destroyed by this function. See cublasLtMatrixLayout_t.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the operation was successful.

See cublasStatus_t for a complete list of valid return codes.

5.4.38. cublasLtMatrixLayoutGetAttribute()

cublasStatus_t cublasLtMatrixLayoutGetAttribute(
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to the specified matrix layout de-
scriptor.

Parameters:

254 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Param-
eter

Mem-
ory

Input /
Output

Description

mat-
Layout

Input Pointer to the previously created structure holding the matrix layout
descriptor queried by this function. See cublasLtMatrixLayout_t.

attr Input The attribute being queried for. See cublasLtMatrixLayoutAt-
tribute_t.

buf Output The attribute value returned by this function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See cublasStatus_t for a complete list of valid return codes.

5.4.39. cublasLtMatrixLayoutSetAttribute()

cublasStatus_t cublasLtMatrixLayoutSetAttribute(
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix layout
descriptor.

Parameters:

5.4. cuBLASLt API Reference 255

cuBLAS, Release 12.6

Param-
eter

Mem-
ory

Input /
Output

Description

mat-
Layout

Input Pointer to the previously created structure holding the matrix layout
descriptor queried by this function. See cublasLtMatrixLayout_t.

attr Input The attribute that will be set by this function. See cublasLtMatrixLay-
outAttribute_t.

buf Input The value to which the specified attribute should be set.

sizeIn-
Bytes

Input Size of buf, the attribute buffer.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf buf is NULL or sizeInBytes doesn’t match size of internal storage
for the selected attribute.

CUBLAS_STATUS_SUCCESSIf attribute was set successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.40. cublasLtMatrixTransform()

cublasStatus_t cublasLtMatrixTransform(
cublasLtHandle_t lightHandle,
cublasLtMatrixTransformDesc_t transformDesc,
const void *alpha,
const void *A,
cublasLtMatrixLayout_t Adesc,
const void *beta,
const void *B,
cublasLtMatrixLayout_t Bdesc,
void *C,
cublasLtMatrixLayout_t Cdesc,
cudaStream_t stream);

This function computes thematrix transformation operation on the inputmatrices A and B, to produce
the output matrix C, according to the below operation:

C = alpha*transformation(A) + beta*transformation(B),

where A, B are input matrices, and alpha and beta are input scalars. The transformation operation
is defined by the transformDesc pointer. This function can be used to change the memory order of
data or to scale and shift the values.

Parameters:

256 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Parameter Memory Input /
Output

Description

lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See cublasLtHandle_t.

transfor-
mDesc

Input Pointer to the opaque descriptor holding the matrix trans-
formation operation. See cublasLtMatrixTransformDesc_t.

alpha, beta Device
or host

Input Pointers to the scalars used in the multiplication.

A, B, and C Device Input Pointers to the GPU memory associated with the corre-
sponding descriptors Adesc, Bdesc and Cdesc.

Adesc, Bdesc
and Cdesc.

Input Handles to the previous created descriptors of the type
cublasLtMatrixLayout_t.
Adesc or Bdesc can be NULL if corresponding pointer is
NULL and corresponding scalar is zero.

stream Host Input The CUDA stream where all the GPU work will be submitted.

Returns:

Return Value Description

CUBLAS_STATUS_NOT_INITIALIZEDIf cuBLASLt handle has not been initialized.

CUBLAS_STATUS_INVALID_VALUEIf the parameters are in conflict or in an impossible configuration. For
example, when A is not NULL, but Adesc is NULL.

CUBLAS_STATUS_NOT_SUPPORTEDIf the current implementation on the selected device does not support
the configured operation.

CUBLAS_STATUS_ARCH_MISMATCHIf the configured operation cannot be run using the selected device.

CUBLAS_STATUS_EXECUTION_FAILEDIf CUDA reported an execution error from the device.

CUBLAS_STATUS_SUCCESS If the operation completed successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.41. cublasLtMatrixTransformDescCreate()

cublasStatus_t cublasLtMatrixTransformDescCreate(
cublasLtMatrixTransformDesc_t *transformDesc,
cudaDataType scaleType);

This function creates a matrix transform descriptor by allocating the memory needed to hold its
opaque structure.

Parameters:

5.4. cuBLASLt API Reference 257

cuBLAS, Release 12.6

Parame-
ter

Mem-
ory

Input /
Output

Description

transfor-
mDesc

Output Pointer to the structure holding the matrix transform descriptor
created by this function. See cublasLtMatrixTransformDesc_t.

scaleType Input Enumerant that specifies the data precision for the matrix trans-
form descriptor this function creates. See cudaDataType.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4.42. cublasLtMatrixTransformDescInit()

cublasStatus_t cublasLtMatrixTransformDescInit(
cublasLtMatrixTransformDesc_t transformDesc,
cudaDataType scaleType);

This function initializes a matrix transform descriptor in a previously allocated one.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

transfor-
mDesc

Output Pointer to the structure holding the matrix transform descriptor
initialized by this function. See cublasLtMatrixTransformDesc_t.

scaleType Input Enumerant that specifies the data precision for the matrix trans-
form descriptor this function initializes. See cudaDataType.

Returns:

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See cublasStatus_t for a complete list of valid return codes.

258 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

5.4.43. cublasLtMatrixTransformDescDestroy()

cublasStatus_t cublasLtMatrixTransformDescDestroy(
cublasLtMatrixTransformDesc_t transformDesc);

This function destroys a previously created matrix transform descriptor object.

Parameters:

Parame-
ter

Mem-
ory

Input /
Output

Description

transfor-
mDesc

Input Pointer to the structure holding the matrix transform descriptor
that should be destroyed by this function. See cublasLtMatrix-
TransformDesc_t.

Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS If the operation was successful.

See cublasStatus_t for a complete list of valid return codes.

5.4.44. cublasLtMatrixTransformDescGetAttribute()

cublasStatus_t cublasLtMatrixTransformDescGetAttribute(
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
void *buf,
size_t sizeInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously createdmatrix trans-
form descriptor.

Parameters:

5.4. cuBLASLt API Reference 259

cuBLAS, Release 12.6

Parame-
ter

Mem-
ory

Input /
Output

Description

transfor-
mDesc

Input Pointer to the previously created structure holding the matrix
transform descriptor queried by this function. See cublasLtMatrix-
TransformDesc_t.

attr Input The attribute that will be retrieved by this function. See cublasLt-
MatrixTransformDescAttributes_t.

buf Output Memory address containing the attribute value retrieved by this
function.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

sizeWrit-
ten

Output Valid only when the return value is CUBLAS_STATUS_SUCCESS. If
sizeInBytes is non-zero: then sizeWritten is the number of
bytes actually written; if sizeInBytes is 0: then sizeWritten is
the number of bytes needed to write full contents.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUE
▶ If sizeInBytes is 0 and sizeWritten is

NULL, or
▶ if sizeInBytes is non-zero and buf is

NULL, or
▶ sizeInBytes doesn’t match size of inter-

nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See cublasStatus_t for a complete list of valid return codes.

5.4.45. cublasLtMatrixTransformDescSetAttribute()

cublasStatus_t cublasLtMatrixTransformDescSetAttribute(
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix trans-
form descriptor.

Parameters:

260 Chapter 5. Using the cuBLASLt API

cuBLAS, Release 12.6

Parame-
ter

Mem-
ory

Input /
Output

Description

transfor-
mDesc

Input Pointer to the previously created structure holding the matrix
transform descriptor queried by this function. See cublasLtMatrix-
TransformDesc_t.

attr Input The attribute that will be set by this function. See cublasLtMatrix-
TransformDescAttributes_t.

buf Input The value to which the specified attribute should be set.

sizeIn-
Bytes

Input Size of buf buffer (in bytes) for verification.

Returns:

Return Value Description

CUBLAS_STATUS_INVALID_VALUEIf buf is NULL or sizeInBytes does not match size of the internal stor-
age for the selected attribute.

CUBLAS_STATUS_SUCCESSIf the attribute was set successfully.

See cublasStatus_t for a complete list of valid return codes.

5.4. cuBLASLt API Reference 261

cuBLAS, Release 12.6

262 Chapter 5. Using the cuBLASLt API

Chapter 6. Using the cuBLASXt API

6.1. General description

The cuBLASXt API of cuBLAS exposes a multi-GPU capable host interface: when using this API the
application only needs to allocate the required matrices on the host memory space. Additionally, the
current implementation supports managed memory on Linux with GPU devices that have compute
capability 6.x or greater but treats it as hostmemory. Managedmemory is not supported onWindows.
There are no restriction on the sizes of the matrices as long as they can fit into the host memory. The
cuBLASXt API takes care of allocating the memory across the designated GPUs and dispatched the
workload between them and finally retrieves the results back to the host. The cuBLASXt API supports
only the compute-intensive BLAS3 routines (e.g matrix-matrix operations) where the PCI transfers
back and forth from the GPU can be amortized. The cuBLASXt API has its own header file cublasXt.
h.

Starting with release 8.0, cuBLASXt API allows any of the matrices to be located on a GPU device.

Note : The cuBLASXt API is only supported on 64-bit platforms.

6.1.1. Tiling design approach

To be able to share the workload between multiples GPUs, the cuBLASXt API uses a tiling strategy :
every matrix is divided in square tiles of user-controllable dimension BlockDim x BlockDim. The result-
ing matrix tiling defines the static scheduling policy : each resulting tile is affected to a GPU in a round
robin fashion One CPU thread is created per GPU and is responsible to do the propermemory transfers
and cuBLAS operations to compute all the tiles that it is responsible for. From a performance point of
view, due to this static scheduling strategy, it is better that compute capabilites and PCI bandwidth
are the same for every GPU. The figure below illustrates the tiles distribution between 3 GPUs. To
compute the first tile G0 from C, the CPU thread 0 responsible of GPU0, have to load 3 tiles from the
first row of A and tiles from the first columun of B in a pipeline fashion in order to overlap memory
transfer and computations and sum the results into the first tile G0 of C before tomove on to the next
tile G0.

When the tile dimension is not an exactmultiple of the dimensions of C, some tiles are partially filled on
the right border or/and the bottom border. The current implementation does not pad the incomplete
tiles but simply keep track of those incomplete tiles by doing the right reduced cuBLAS opearations :
this way, no extra computation is done. However it still can lead to some load unbalance when all GPUS
do not have the same number of incomplete tiles to work on.

When one or more matrices are located on some GPU devices, the same tiling approach and workload
sharing is applied. The memory transfers are in this case done between devices. However, when the

263

cuBLAS, Release 12.6

Fig. 1: Example of cublasXt<t>gemm tiling for 3 Gpus

264 Chapter 6. Using the cuBLASXt API

cuBLAS, Release 12.6

computation of a tile and some data are located on the sameGPU device, thememory transfer to/from
the local data into tiles is bypassed and the GPU operates directly on the local data. This can lead to a
significant performance increase, especially when only one GPU is used for the computation.

The matrices can be located on any GPU device, and do not have to be located on the same GPU
device. Furthermore, the matrices can even be located on a GPU device that do not participate to the
computation.

On the contrary of the cuBLAS API, even if all matrices are located on the same device, the cuBLASXt
API is still a blocking API from the host point of view : the data results wherever located will be valid
on the call return and no device synchronization is required.

6.1.2. Hybrid CPU-GPU computation

In the case of very large problems, the cuBLASXt API offers the possibility to offload some of the
computation to the host CPU. This feature can be setup with the routines cublasXtSetCpuRoutine()
and cublasXtSetCpuRatio() The workload affected to the CPU is put aside : it is simply a percentage
of the resulting matrix taken from the bottom and the right side whichever dimension is bigger. The
GPU tiling is done after that on the reduced resulting matrix.

If any of the matrices is located on a GPU device, the feature is ignored and all computation will be
done only on the GPUs

This feature should be used with caution because it could interfere with the CPU threads responsible
of feeding the GPUs.

Currently, only the routine cublasXt<t>gemm supports this feature.

6.1.3. Results reproducibility

Currently all cuBLASXt API routines from a given toolkit version, generate the same bit-wise results
when the following conditions are respected :

▶ all GPUs particating to the computation have the same compute capabilities and the same num-
ber of SMs.

▶ the tiles size is kept the same between run.

▶ either the CPU hybrid computation is not used or the CPU Blas provided is also guaranteed to
produce reproducible results.

6.2. cuBLASXt API Datatypes Reference

6.2.1. cublasXtHandle_t

The cublasXtHandle_t type is a pointer type to an opaque structure holding the cuBLASXt API con-
text. The cuBLASXt API context must be initialized using cublasXtCreate() and the returned handle
must be passed to all subsequent cuBLASXt API function calls. The context should be destroyed at
the end using cublasXtDestroy().

6.2. cuBLASXt API Datatypes Reference 265

cuBLAS, Release 12.6

6.2.2. cublasXtOpType_t

The cublasOpType_t enumerates the four possible types supported by BLAS routines. This enum is
used as parameters of the routines cublasXtSetCpuRoutine and cublasXtSetCpuRatio to setup
the hybrid configuration.

Value Meaning

CUBLASXT_FLOAT float or single precision type

CUBLASXT_DOUBLE double precision type

CUBLASXT_COMPLEX single precision complex

CUBLASXT_DOUBLECOMPLEX double precision complex

6.2.3. cublasXtBlasOp_t

The cublasXtBlasOp_t type enumerates the BLAS3 or BLAS-like routine supported by
cuBLASXt API. This enum is used as parameters of the routines cublasXtSetCpuRoutine and
cublasXtSetCpuRatio to setup the hybrid configuration.

Value Meaning

CUBLASXT_GEMM GEMM routine

CUBLASXT_SYRK SYRK routine

CUBLASXT_HERK HERK routine

CUBLASXT_SYMM SYMM routine

CUBLASXT_HEMM HEMM routine

CUBLASXT_TRSM TRSM routine

CUBLASXT_SYR2K SYR2K routine

CUBLASXT_HER2K HER2K routine

CUBLASXT_SPMM SPMM routine

CUBLASXT_SYRKX SYRKX routine

CUBLASXT_HERKX HERKX routine

266 Chapter 6. Using the cuBLASXt API

cuBLAS, Release 12.6

6.2.4. cublasXtPinningMemMode_t

The type is used to enable or disable the Pinning Memory mode through the routine cubasMgSet-
PinningMemMode

Value Meaning

CUBLASXT_PINNING_DISABLED the Pinning Memory mode is disabled

CUBLASXT_PINNING_ENABLED the Pinning Memory mode is enabled

6.3. cuBLASXt API Helper Function Reference

6.3.1. cublasXtCreate()

cublasStatus_t
cublasXtCreate(cublasXtHandle_t *handle)

This function initializes the cuBLASXt API and creates a handle to an opaque structure holding the
cuBLASXt API context. It allocates hardware resources on the host and device and must be called
prior to making any other cuBLASXt API calls.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded

CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

CUBLAS_STATUS_NOT_SUPPORTED cuBLASXt API is only supported on 64-bit platform

6.3.2. cublasXtDestroy()

cublasStatus_t
cublasXtDestroy(cublasXtHandle_t handle)

This function releases hardware resources used by the cuBLASXt API context. The release of GPU re-
sourcesmay be deferred until the application exits. This function is usually the last call with a particular
handle to the cuBLASXt API.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the shut down succeeded

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

6.3. cuBLASXt API Helper Function Reference 267

cuBLAS, Release 12.6

6.3.3. cublasXtDeviceSelect()

cublasXtDeviceSelect(cublasXtHandle_t handle, int nbDevices, int deviceId[])

This function allows the user to provide the number of GPU devices and their respective Ids that will
participate to the subsequent cuBLASXt API Math function calls. This function will create a cuBLAS
context for every GPU provided in that list. Currently the device configuration is static and cannot be
changed between Math function calls. In that regard, this function should be called only once after
cublasXtCreate. To be able to run multiple configurations, multiple cuBLASXt API contexts should
be created.

Return Value Meaning

CUBLAS_STATUS_SUCCESSUser call was sucessful

CUBLAS_STATUS_INVALID_VALUEAccess to at least one of the device could not be done or a cuBLAS con-
text could not be created on at least one of the device

CUBLAS_STATUS_ALLOC_FAILEDSome resources could not be allocated.

6.3.4. cublasXtSetBlockDim()

cublasXtSetBlockDim(cublasXtHandle_t handle, int blockDim)

This function allows the user to set the block dimension used for the tiling of the matrices for the
subsequent Math function calls. Matrices are split in square tiles of blockDim x blockDim dimension.
This function can be called anytime andwill take effect for the followingMath function calls. The block
dimension should be chosen in a way to optimize the math operation and to make sure that the PCI
transfers are well overlapped with the computation.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blockDim <= 0

6.3.5. cublasXtGetBlockDim()

cublasXtGetBlockDim(cublasXtHandle_t handle, int *blockDim)

This function allows the user to query the block dimension used for the tiling of the matrices.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

268 Chapter 6. Using the cuBLASXt API

cuBLAS, Release 12.6

6.3.6. cublasXtSetCpuRoutine()

cublasXtSetCpuRoutine(cublasXtHandle_t handle, cublasXtBlasOp_t blasOp,�
↪→cublasXtOpType_t type, void *blasFunctor)

This function allows the user to provide a CPU implementation of the corresponding BLAS routine.
This function can be used with the function cublasXtSetCpuRatio() to define an hybrid computation
between the CPU and the GPUs. Currently the hybrid feature is only supported for the xGEMM rou-
tines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blasOp or type define an invalid combination

CUBLAS_STATUS_NOT_SUPPORTED CPU-GPU Hybridization for that routine is not supported

6.3.7. cublasXtSetCpuRatio()

cublasXtSetCpuRatio(cublasXtHandle_t handle, cublasXtBlasOp_t blasOp, cublasXtOpType_
↪→t type, float ratio)

This function allows the user to define the percentage of workload that should be done on a CPU in the
context of an hybrid computation. This function can be used with the function cublasXtSetCpuRou-
tine() to define an hybrid computation between the CPU and the GPUs. Currently the hybrid feature
is only supported for the xGEMM routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blasOp or type define an invalid combination

CUBLAS_STATUS_NOT_SUPPORTED CPU-GPU Hybridization for that routine is not supported

6.3.8. cublasXtSetPinningMemMode()

cublasXtSetPinningMemMode(cublasXtHandle_t handle, cublasXtPinningMemMode_t mode)

This function allows the user to enable or disable the PinningMemorymode. When enabled, thematri-
ces passed in subsequent cuBLASXt API calls will be pinned/unpinned using the CUDART routine cud-
aHostRegister() and cudaHostUnregister() respectively if the matrices are not already pinned.
If a matrix happened to be pinned partially, it will also not be pinned. Pinning the memory improve
PCI transfer performace and allows to overlap PCI memory transfer with computation. However pin-
ning/unpinning the memory take some time which might not be amortized. It is advised that the user
pins the memory on its own using cudaMallocHost() or cudaHostRegister() and unpin it when
the computation sequence is completed. By default, the Pinning Memory mode is disabled.

6.3. cuBLASXt API Helper Function Reference 269

cuBLAS, Release 12.6

Note: The Pinning Memory mode should not enabled when matrices used for different calls to
cuBLASXt API overlap. cuBLASXt determines that a matrix is pinned or not if the first address of
that matrix is pinned using cudaHostGetFlags(), thus cannot know if the matrix is already partially
pinned or not. This is especially true in multi-threaded application where memory could be partially or
totally pinned or unpinned while another thread is accessing that memory.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUEthe mode value is different from CUBLASXT_PINNING_DISABLED and
CUBLASXT_PINNING_ENABLED

6.3.9. cublasXtGetPinningMemMode()

cublasXtGetPinningMemMode(cublasXtHandle_t handle, cublasXtPinningMemMode_t *mode)

This function allows the user to query the Pinning Memory mode. By default, the Pinning Memory
mode is disabled.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

6.4. cuBLASXt API Math Functions Reference

In this chapter we describe the actual Linear Agebra routines that cuBLASXt API supports. We will use
abbreviations <type> for type and <t> for the corresponding short type to make a more concise and
clear presentation of the implemented functions. Unless otherwise specified <type> and <t> have the
following meanings:

<type> <t> Meaning

float ‘s’ or ‘S’ real single-precision

double ‘d’ or ‘D’ real double-precision

cuComplex ‘c’ or ‘C’ complex single-precision

cuDoubleComplex ‘z’ or ‘Z’ complex double-precision

The abbreviation Re(·) and Im(·) will stand for the real and imaginary part of a number, respectively.
Since imaginary part of a real number does not exist, wewill consider it to be zero and can usually simply
discard it from the equation where it is being used. Also, the ᾱ will denote the complex conjugate of α
.

270 Chapter 6. Using the cuBLASXt API

cuBLAS, Release 12.6

In general throughout the documentation, the lower case Greek symbols α and β will denote scalars,
lower case English letters in bold type x and y will denote vectors and capital English letters A , B and
C will denote matrices.

6.4.1. cublasXt<t>gemm()

cublasStatus_t cublasXtSgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
size_t m, size_t n, size_t k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasXtDgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasXtCgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int ldb,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasXtZgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function performs the matrix-matrix multiplication

C = αop(A)op(B) + βC

whereα and β are scalars, andA ,B andC arematrices stored in column-major formatwith dimensions
op(A) m× k , op(B) k × n and C m× n , respectively. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

6.4. cuBLASXt API Math Functions Reference 271

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

transa in-
put

operation op(A) that is non- or (conj.) transpose.

transb in-
put

operation op(B) that is non- or (conj.) transpose.

m in-
put

number of rows of matrix op(A) and C.

n in-
put

number of columns of matrix op(B) and C.

k in-
put

number of columns of op(A) and rows of op(B).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimensions lda x kwith lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store the matrix A.

B host or
device

in-
put

<type> array of dimension ldb x n with ldb>=max(1,k) if transb ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication. If beta==0, C does not have to be
a valid input.

C host or
device

in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of a two-dimensional array used to store the matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgemm, dgemm, cgemm, zgemm

272 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.6

6.4.2. cublasXt<t>hemm()

cublasStatus_t cublasXtChemm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const cuComplex *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZhemm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t ldc)

This function performs the Hermitian matrix-matrix multiplication

C =

αAB + βC if side == CUBLAS_SIDE_LEFT

αBA+ βC if side == CUBLAS_SIDE_RIGHT

where A is a Hermitian matrix stored in lower or upper mode, B and C are m × n matrices, and α and
β are scalars.

6.4. cuBLASXt API Math Functions Reference 273

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other Hermitian
part is not referenced and is inferred from the stored elements.

m in-
put

number of rows of matrix C and B, with matrix A sized accordingly.

n in-
put

number of columns of matrix C and B, with matrix A sized accordingly.

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x m with lda>=max(1,m) if
side==CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) oth-
erwise. The imaginary parts of the diagonal elements are assumed to be
zero.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemm, zhemm

274 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

cuBLAS, Release 12.6

6.4.3. cublasXt<t>symm()

cublasStatus_t cublasXtSsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const float *alpha,
const float *A, size_t lda,
const float *B, size_t ldb,
const float *beta,
float *C, size_t ldc)

cublasStatus_t cublasXtDsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const double *alpha,
const double *A, size_t lda,
const double *B, size_t ldb,
const double *beta,
double *C, size_t ldc)

cublasStatus_t cublasXtCsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const cuComplex *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t ldc)

This function performs the symmetric matrix-matrix multiplication

C =

αAB + βC if side == CUBLAS_SIDE_LEFT

αBA+ βC if side == CUBLAS_SIDE_RIGHT

where A is a symmetric matrix stored in lower or upper mode, A and A are m× nmatrices, and α and
β are scalars.

6.4. cuBLASXt API Math Functions Reference 275

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

m in-
put

number of rows of matrix A and B, with matrix A sized accordingly.

n in-
put

number of columns of matrix C and A, with matrix A sized accordingly.

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta == 0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

276 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

cuBLAS, Release 12.6

6.4.4. cublasXt<t>syrk()

cublasStatus_t cublasXtSsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const float *A, int lda,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasXtDsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const double *A, int lda,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasXtCsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasXtZsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function performs the symmetric rank- k update

C = αop(A)op(A)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

6.4. cuBLASXt API Math Functions Reference 277

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A) and C.

k in-
put

number of columns of matrix op(A).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if trans ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

beta host in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

278 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.6

6.4.5. cublasXt<t>syr2k()

cublasStatus_t cublasXtSsyr2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const float *alpha,
const float *A, size_t lda,
const float *B, size_t ldb,
const float *beta,
float *C, size_t ldc)

cublasStatus_t cublasXtDsyr2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const double *alpha,
const double *A, size_t lda,
const double *B, size_t ldb,
const double *beta,
double *C, size_t ldc)

cublasStatus_t cublasXtCsyr2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const cuComplex *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZsyr2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t ldc)

This function performs the symmetric rank- 2k update

C = α(op(A)op(B)T + op(B)op(A)T) + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AT and BT if trans == CUBLAS_OP_T

6.4. cuBLASXt API Math Functions Reference 279

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimensions ldb x kwith ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta==0, then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2k, dsyr2k, csyr2k, zsyr2k

280 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.6

6.4.6. cublasXt<t>syrkx()

cublasStatus_t cublasXtSsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const float *alpha,
const float *A, size_t lda,
const float *B, size_t ldb,
const float *beta,
float *C, size_t ldc)

cublasStatus_t cublasXtDsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const double *alpha,
const double *A, size_t lda,
const double *B, size_t ldb,
const double *beta,
double *C, size_t ldc)

cublasStatus_t cublasXtCsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const cuComplex *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t ldc)

This function performs a variation of the symmetric rank- k update

C = α(op(A)op(B)T + βC

where α and β are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AT and BT if trans == CUBLAS_OP_T

This routine can be used when B is in such way that the result is guaranteed to be symmetric. An usual
example is when thematrix B is a scaled form of thematrix A : this is equivalent to B being the product
of the matrix A and a diagonal matrix.

6.4. cuBLASXt API Math Functions Reference 281

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimensions ldb x kwith ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta==0, then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk and

ssyr2k, dsyr2k, csyr2k, zsyr2k

282 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.6

6.4.7. cublasXt<t>herk()

cublasStatus_t cublasXtCherk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,
const cuComplex *A, int lda,
const float *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasXtZherk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const cuDoubleComplex *A, int lda,
const double *beta,
cuDoubleComplex *C, int ldc)

This function performs the Hermitian rank- k update

C = αop(A)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n× k . Also, for matrix A

op(A) =

 A if transa == CUBLAS_OP_N

AH if transa == CUBLAS_OP_C

6.4. cuBLASXt API Math Functions Reference 283

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A) and C.

k in-
put

number of columns of matrix op(A).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

beta host in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk

284 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

cuBLAS, Release 12.6

6.4.8. cublasXt<t>her2k()

cublasStatus_t cublasXtCher2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const float *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZher2k(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const double *beta,
cuDoubleComplex *C, size_t ldc)

This function performs the Hermitian rank- 2k update

C = αop(A)op(B)H + αop(B)op(A)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AH and BH if trans == CUBLAS_OP_C

6.4. cuBLASXt API Math Functions Reference 285

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimension ldb x k with ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta==0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2k, zher2k

286 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.6

6.4.9. cublasXt<t>herkx()

cublasStatus_t cublasXtCherkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
const float *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZherkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
const double *beta,
cuDoubleComplex *C, size_t ldc)

This function performs a variation of the Hermitian rank- k update

C = αop(A)op(B)H + βC

where α and β are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n× k and op(B) n× k , respectively. Also, for matrix A and B

op(A) and op(B) =

 A and B if trans == CUBLAS_OP_N

AH and BH if trans == CUBLAS_OP_C

This routine can be used when thematrix B is in such way that the result is guaranteed to be hermitian.
An usual example is when the matrix B is a scaled form of the matrix A : this is equivalent to B being
the product of the matrix A and a diagonal matrix. For an efficient computation of the product of a
regular matrix with a diagonal matrix, refer to the routine cublasXt<t>dgmm.

6.4. cuBLASXt API Math Functions Reference 287

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

uplo in-
put

indicates if matrix C lower or upper part is stored, the other Hermitian
part is not referenced.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

n in-
put

number of rows of matrix op(A), op(B) and C.

k in-
put

number of columns of matrix op(A) and op(B).

al-
pha

host in-
put

<type> scalar used for multiplication.

A host or
device

in-
put

<type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimension ldb x k with ldb>=max(1,n) if transb ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

real scalar used for multiplication, if beta==0 then C does not have to be
a valid input.

C host or
device

in/out <type> array of dimensionldc x n, withldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk and

cher2k, zher2k

288 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f
http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.6

6.4.10. cublasXt<t>trsm()

cublasStatus_t cublasXtStrsm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,
const float *alpha,
const float *A, size_t lda,
float *B, size_t ldb)

cublasStatus_t cublasXtDtrsm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,
const double *alpha,
const double *A, size_t lda,
double *B, size_t ldb)

cublasStatus_t cublasXtCtrsm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
cuComplex *B, size_t ldb)

cublasStatus_t cublasXtZtrsm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
cuDoubleComplex *B, size_t ldb)

This function solves the triangular linear system with multiple right-hand-sidesop(A)X = αB if side == CUBLAS_SIDE_LEFT

Xop(A) = αB if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal,X and
B arem× nmatrices, and α is a scalar. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides B on exit.

No test for singularity or near-singularity is included in this function.

6.4. cuBLASXt API Math Functions Reference 289

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

side in-
put

indicates if matrix A is on the left or right of X.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not
referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

m in-
put

number of rows of matrix B, with matrix A sized accordingly.

n in-
put

number of columns of matrix B, with matrix A is sized accordingly.

al-
pha

host in-
put

<type> scalar used for multiplication, if alpha==0 then A is not refer-
enced and B does not have to be a valid input.

A host or
device

in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in/out <type> array. It has dimensions ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

290 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.6

6.4.11. cublasXt<t>trmm()

cublasStatus_t cublasXtStrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,
const float *alpha,
const float *A, size_t lda,
const float *B, size_t ldb,
float *C, size_t ldc)

cublasStatus_t cublasXtDtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,
const double *alpha,
const double *A, size_t lda,
const double *B, size_t ldb,
double *C, size_t ldc)

cublasStatus_t cublasXtCtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,
const cuComplex *alpha,
const cuComplex *A, size_t lda,
const cuComplex *B, size_t ldb,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
cuDoubleComplex *C, size_t ldc)

This function performs the triangular matrix-matrix multiplication

C =

αop(A)B if side == CUBLAS_SIDE_LEFT

αBop(A) if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, B and
C arem× nmatrix, and α is a scalar. Also, for matrix A

op(A) =

A if transa == CUBLAS_OP_N

AT if transa == CUBLAS_OP_T

AH if transa == CUBLAS_OP_C

Notice that in order to achieve better parallelism, similarly to the cublas API, cuBLASXt API differs from
the BLAS API for this routine. The BLAS API assumes an in-place implementation (with results written
back to B), while the cuBLASXt API assumes an out-of-place implementation (with results written into
C). The application can still obtain the in-place functionality of BLAS in the cuBLASXt API by passing
the address of the matrix B in place of the matrix C. No other overlapping in the input parameters is
supported.

6.4. cuBLASXt API Math Functions Reference 291

cuBLAS, Release 12.6

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other part is not
referenced and is inferred from the stored elements.

trans in-
put

operation op(A) that is non- or (conj.) transpose.

diag in-
put

indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

m in-
put

number of rows of matrix B, with matrix A sized accordingly.

n in-
put

number of columns of matrix B, with matrix A sized accordingly.

al-
pha

host in-
put

<type> scalar used for multiplication, if alpha==0 then A is not refer-
enced and B does not have to be a valid input.

A host or
device

in-
put

<type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda in-
put

leading dimension of two-dimensional array used to store matrix A.

B host or
device

in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

C host or
device

in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmm, dtrmm, ctrmm, ztrmm

292 Chapter 6. Using the cuBLASXt API

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

cuBLAS, Release 12.6

6.4.12. cublasXt<t>spmm()

cublasStatus_t cublasXtSspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const float *alpha,
const float *AP,
const float *B,
size_t ldb,
const float *beta,
float *C,
size_t ldc);

cublasStatus_t cublasXtDspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const double *alpha,
const double *AP,
const double *B,
size_t ldb,
const double *beta,
double *C,
size_t ldc);

cublasStatus_t cublasXtCspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const cuComplex *alpha,
const cuComplex *AP,
const cuComplex *B,
size_t ldb,
const cuComplex *beta,
cuComplex *C,
size_t ldc);

cublasStatus_t cublasXtZspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *B,
size_t ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C,
size_t ldc);

This function performs the symmetric packed matrix-matrix multiplication

6.4. cuBLASXt API Math Functions Reference 293

cuBLAS, Release 12.6

C =

αAB + βC if side == CUBLAS_SIDE_LEFT

αBA+ βC if side == CUBLAS_SIDE_RIGHT

where A is a n× n symmetric matrix stored in packed format, B and C arem× nmatrices, and α and
β are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)∕2] for j = 1, . . . , n and i ≥ j . Consequently,
the packed format requires only n(n+1)

2 elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))∕2] for j = 1, . . . , n and i ≤ j . Consequently, the
packed format requires only n(n+1)

2 elements for storage.

Note: The packed matrix AP must be located on the host or managed memory whereas the other
matrices can be located on the host or any GPU device

Param.Memory In/out Meaning

han-
dle

in-
put

handle to the cuBLASXt API context.

side in-
put

indicates if matrix A is on the left or right of B.

uplo in-
put

indicates if matrix A lower or upper part is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

m in-
put

number of rows of matrix A and B, with matrix A sized accordingly.

n in-
put

number of columns of matrix C and A, with matrix A sized accordingly.

al-
pha

host in-
put

<type> scalar used for multiplication.

AP host in-
put

<type> array with A stored in packed format.

B host or
device

in-
put

<type> array of dimension ldb x n with ldb>=max(1,m).

ldb in-
put

leading dimension of two-dimensional array used to store matrix B.

beta host in-
put

<type> scalar used for multiplication, if beta == 0 then C does not have
to be a valid input.

C host or
device

in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc in-
put

leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

294 Chapter 6. Using the cuBLASXt API

cuBLAS, Release 12.6

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_NOT_SUPPORTED the matrix AP is located on a GPU device

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

6.4. cuBLASXt API Math Functions Reference 295

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

cuBLAS, Release 12.6

296 Chapter 6. Using the cuBLASXt API

Chapter 7. Using the cuBLASDx API

The cuBLASDx library (preview) is a device side API extension for performing BLAS calculations inside
CUDA kernels. By fusing numerical operations you can decrease latency and further improve perfor-
mance of your applications.

▶ You can access cuBLASDx documentation here.

▶ cuBLASDx is not a part of the CUDA Toolkit. You can download cuBLASDx separately from here.

297

https://docs.nvidia.com/cuda/cublasdx
https://developer.nvidia.com/cublasdx-downloads

cuBLAS, Release 12.6

298 Chapter 7. Using the cuBLASDx API

Chapter 8. Using the cuBLAS Legacy
API

This section does not provide a full reference of each Legacy API datatype and entry point. Instead, it
describes how to use the API, especially where this is different from the regular cuBLAS API.

Note that in this section, all references to the “cuBLAS Library” refer to the Legacy cuBLAS API only.

Warning: The legacy cuBLAS API is deprecated and will be removed in future release.

8.1. Error Status

The cublasStatus type is used for function status returns. The cuBLAS Library helper functions
return status directly, while the status of core functions can be retrieved using cublasGetEr-
ror(). Notice that reading the error status via cublasGetError(), resets the internal error state to
CUBLAS_STATUS_SUCCESS. Currently, the following values for are defined:

Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the resource allocation failed

CUBLAS_STATUS_INVALID_VALUE an invalid numerical value was used as an argument

CUBLAS_STATUS_ARCH_MISMATCH an absent device architectural feature is required

CUBLAS_STATUS_MAPPING_ERROR an access to GPU memory space failed

CUBLAS_STATUS_EXECUTION_FAILED the GPU program failed to execute

CUBLAS_STATUS_INTERNAL_ERROR an internal operation failed

CUBLAS_STATUS_NOT_SUPPORTED the feature required is not supported

This legacy type corresponds to type cublasStatus_t in the cuBLAS library API.

299

cuBLAS, Release 12.6

8.2. Initialization and Shutdown

The functionscublasInit() andcublasShutdown() are used to initialize and shutdown the cuBLAS
library. It is recommended for cublasInit() to be called before any other function is invoked. It
allocates hardware resources on the GPU device that is currently bound to the host thread fromwhich
it was invoked.

The legacy initialization and shutdown functions are similar to the cuBLAS library API routines
cublasCreate() and cublasDestroy().

8.3. Thread Safety

The legacy API is not thread safewhen usedwithmultiple host threads and devices. It is recommended
to be used only when utmost compatibility with Fortran is required and when a single host thread is
used to setup the library and make all the functions calls.

8.4. Memory Management

The memory used by the legacy cuBLAS library API is allocated and released using functions
cublasAlloc() and cublasFree(), respectively. These functions create and destroy an object in
the GPU memory space capable of holding an array of n elements, where each element requires el-
emSize bytes of storage. Please see the legacy cuBLAS API header file “cublas.h” for the prototypes
of these functions.

The function cublasAlloc() is a wrapper around the function cudaMalloc(), therefore device
pointers returned by cublasAlloc() can be passed to any CUDA™ device kernel functions. How-
ever, these device pointers can not be dereferenced in the host code. The function cublasFree() is
a wrapper around the function cudaFree().

8.5. Scalar Parameters

In the legacy cuBLAS API, scalar parameters are passed by value from the host. Also, the few functions
that do return a scalar result, such as dot() and nrm2(), return the resulting value on the host, and hence
these routines will wait for kernel execution on the device to complete before returning, which makes
parallelism with streams impractical. However, the majority of functions do not return any value, in
order to be more compatible with Fortran and the existing BLAS libraries.

300 Chapter 8. Using the cuBLAS Legacy API

cuBLAS, Release 12.6

8.6. Helper Functions

In this section we list the helper functions provided by the legacy cuBLAS API and their functional-
ity. For the exact prototypes of these functions please refer to the legacy cuBLAS API header file
“cublas.h”.

Helper function Meaning

cublasInit() initialize the library

cublasShutdown() shuts down the library

cublasGetError() retrieves the error status of the library

cublasSetKernelStream() sets the stream to be used by the library

cublasAlloc() allocates the device memory for the library

cublasFree() releases the device memory allocated for the library

cublasSetVector() copies a vector x on the host to a vector on the GPU

cublasGetVector() copies a vector x on the GPU to a vector on the host

cublasSetMatrix() copies am× n tile from a matrix on the host to the GPU

cublasGetMatrix() copies am× n tile from a matrix on the GPU to the host

cublasSetVectorAsync() similar to cublasSetVector(), but the copy is asynchronous

cublasGetVectorAsync() similar to cublasGetVector(), but the copy is asynchronous

cublasSetMatrixAsync() similar to cublasSetMatrix(), but the copy is asynchronous

cublasGetMatrixAsync() similar to cublasGetMatrix(), but the copy is asynchronous

8.7. Level-1,2,3 Functions

The Level-1,2,3 cuBLAS functions (also called core functions) have the same name and behavior as the
ones listed in the chapters 3, 4 and 5 in this document. Please refer to the legacy cuBLAS API header
file “cublas.h” for their exact prototype. Also, the next section talks a bit more about the differences
between the legacy and the cuBLAS API prototypes, more specifically how to convert the function
calls from one API to another.

8.8. Converting Legacy to the cuBLAS API

There are a few general rules that can be used to convert from legacy to the cuBLAS API:

▶ Exchange the header file “cublas.h” for “cublas_v2.h”.

▶ Exchange the type cublasStatus for cublasStatus_t.

▶ Exchange the function cublasSetKernelStream() for cublasSetStream().

8.6. Helper Functions 301

cuBLAS, Release 12.6

▶ Exchange the function cublasAlloc() and cublasFree() for cudaMalloc() and cud-
aFree(), respectively. Notice that cudaMalloc() expects the size of the allocated memory
to be provided in bytes (usually simply provide n x elemSize to allocate n elements, each of
size elemSize bytes).

▶ Declare the cublasHandle_t cuBLAS library handle.

▶ Initialize the handle using cublasCreate(). Also, release the handle once finished using cublasDe-
stroy().

▶ Add the handle as the first parameter to all the cuBLAS library function calls.

▶ Change the scalar parameters to be passed by reference, instead of by value (usually simply
adding “&” symbol in C/C++ is enough, because the parameters are passed by reference on the
host by default). However, note that if the routine is running asynchronously, then the variable
holding the scalar parameter cannot be changed until the kernels that the routine dispatches
are completed. See the CUDA C++ Programming Guide for a detailed discussion of how to use
streams.

▶ Change the parameter characters N or n (non-transpose operation), T or t (transpose operation)
and C or c (conjugate transpose operation) to CUBLAS_OP_N, CUBLAS_OP_T and CUBLAS_OP_C,
respectively.

▶ Change the parameter characters L or l (lower part filled) and U or u (upper part filled) to
CUBLAS_FILL_MODE_LOWER and CUBLAS_FILL_MODE_UPPER, respectively.

▶ Change the parameter characters N or n (non-unit diagonal) and U or u (unit diagonal) to
CUBLAS_DIAG_NON_UNIT and CUBLAS_DIAG_UNIT, respectively.

▶ Change the parameter characters L or l (left side) and R or r (right side) to CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, respectively.

▶ If the legacy API function returns a scalar value, add an extra scalar parameter of the same type
passed by reference, as the last parameter to the same function.

▶ Instead of using cublasGetError(), use the return value of the function itself to check for
errors.

▶ Finally, please use the function prototypes in the header files cublas.h and cublas_v2.h to
check the code for correctness.

8.9. Examples

For sample code references that use the legacy cuBLAS API please see the two examples below. They
show an application written in C using the legacy cuBLAS library API with two indexing styles (Example
A.1. “Application Using C and cuBLAS: 1-based indexing” and Example A.2. “Application Using C and
cuBLAS: 0-based Indexing”). This application is analogous to the one using the cuBLAS library API that
is shown in the Introduction chapter.

Example A.1. Application Using C and cuBLAS: 1-based indexing

∕∕---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cublas.h"
#define M 6

(continues on next page)

302 Chapter 8. Using the cuBLAS Legacy API

cuBLAS, Release 12.6

(continued from previous page)

#define N 5
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

static __inline__ void modify (float *m, int ldm, int n, int p, int q, float alpha,�
↪→float beta){

cublasSscal (n-q+1, alpha, &m[IDX2F(p,q,ldm)], ldm);
cublasSscal (ldm-p+1, beta, &m[IDX2F(p,q,ldm)], 1);

}

int main (void){
int i, j;
cublasStatus stat;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if (!a) {

printf ("host memory allocation failed");
return EXIT_FAILURE;

}
for (j = 1; j <= N; j++) {

for (i = 1; i <= M; i++) {
a[IDX2F(i,j,M)] = (float)((i-1) * M + j);

}
}
cublasInit();
stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("device memory allocation failed");
cublasShutdown();
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

}
modify (devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("data upload failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

}
cublasFree (devPtrA);
cublasShutdown();
for (j = 1; j <= N; j++) {

for (i = 1; i <= M; i++) {
printf ("%7.0f", a[IDX2F(i,j,M)]);

}
printf ("\n");

}
free(a);
return EXIT_SUCCESS;

}

8.9. Examples 303

cuBLAS, Release 12.6

Example A.2. Application Using C and cuBLAS: 0-based indexing

∕∕---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cublas.h"
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

static __inline__ void modify (float *m, int ldm, int n, int p, int q, float alpha,�
↪→float beta){

cublasSscal (n-q, alpha, &m[IDX2C(p,q,ldm)], ldm);
cublasSscal (ldm-p, beta, &m[IDX2C(p,q,ldm)], 1);

}

int main (void){
int i, j;
cublasStatus stat;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if (!a) {

printf ("host memory allocation failed");
return EXIT_FAILURE;

}
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {
a[IDX2C(i,j,M)] = (float)(i * M + j + 1);

}
}
cublasInit();
stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("device memory allocation failed");
cublasShutdown();
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

}
modify (devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != cuBLAS_STATUS_SUCCESS) {

printf ("data upload failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

}
cublasFree (devPtrA);
cublasShutdown();
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {
(continues on next page)

304 Chapter 8. Using the cuBLAS Legacy API

cuBLAS, Release 12.6

(continued from previous page)

printf ("%7.0f", a[IDX2C(i,j,M)]);
}
printf ("\n");

}
free(a);
return EXIT_SUCCESS;

}

8.9. Examples 305

cuBLAS, Release 12.6

306 Chapter 8. Using the cuBLAS Legacy API

Chapter 9. cuBLAS Fortran Bindings

The cuBLAS library is implemented using the C-based CUDA toolchain. Thus, it provides a C-style
API. This makes interfacing to applications written in C and C++ trivial, but the library can also be
used by applications written in Fortran. In particular, the cuBLAS library uses 1-based indexing and
Fortran-style column-major storage for multidimensional data to simplify interfacing to Fortran appli-
cations. Unfortunately, Fortran-to-C calling conventions are not standardized and differ by platform
and toolchain. In particular, differences may exist in the following areas:

▶ symbol names (capitalization, name decoration)

▶ argument passing (by value or reference)

▶ passing of string arguments (length information)

▶ passing of pointer arguments (size of the pointer)

▶ returning floating-point or compound data types (for example single-precision or complex data
types)

To provide maximum flexibility in addressing those differences, the cuBLAS Fortran interface is pro-
vided in the form of wrapper functions and is part of the Toolkit delivery. The C source code of those
wrapper functions is located in the src directory and provided in two different forms:

▶ the thunking wrapper interface located in the file fortran_thunking.c

▶ the direct wrapper interface located in the file fortran.c

The code of one of those two files needs to be compiled into an application for it to call the cuBLAS API
functions. Providing source code allows users tomake any changes necessary for a particular platform
and toolchain.

The code in those two C files has been used to demonstrate interoperability with the compilers g77
3.2.3 and g95 0.91 on 32-bit Linux, g77 3.4.5 and g95 0.91 on 64-bit Linux, Intel Fortran 9.0 and Intel
Fortran 10.0 on 32-bit and 64-bit Microsoft Windows XP, and g77 3.4.0 and g95 0.92 on Mac OS X.

Note that for g77, use of the compiler flag -fno-second-underscore is required to use these wrap-
pers as provided. Also, the use of the default calling conventions with regard to argument and return
value passing is expected. Using the flag -fno-f2c changes the default calling convention with respect
to these two items.

The thunking wrappers allow interfacing to existing Fortran applications without any changes to the
application. During each call, the wrappers allocate GPUmemory, copy source data from CPUmemory
space to GPUmemory space, call cuBLAS, and finally copy back the results to CPUmemory space and
deallocate the GPU memory. As this process causes very significant call overhead, these wrappers
are intended for light testing, not for production code. To use the thunking wrappers, the application
needs to be compiled with the file fortran_thunking.c.

The direct wrappers, intended for production code, substitute device pointers for vector and matrix
arguments in all BLAS functions. To use these interfaces, existing applications need to be modified

307

cuBLAS, Release 12.6

slightly to allocate and deallocate data structures in GPU memory space (using cuBLAS_ALLOC and
cuBLAS_FREE) and to copy data between GPU and CPUmemory spaces (using cuBLAS_SET_VECTOR,
cuBLAS_GET_VECTOR, cuBLAS_SET_MATRIX, and cuBLAS_GET_MATRIX). The sample wrappers pro-
vided in fortran.c map device pointers to the OS-dependent type size_t, which is 32-bit wide on
32-bit platforms and 64-bit wide on a 64-bit platforms.

One approach to deal with index arithmetic on device pointers in Fortran code is to use C-stylemacros,
and use the C preprocessor to expand these, as shown in the example below. On Linux and Mac OS
X, one way of pre-processing is to use the option -E -x f77-cpp-input when using g77 compiler,
or simply the option -cpp when using g95 or gfortran. On Windows platforms with Microsoft Visual
C/C++, using ’cl -EP’ achieves similar results.

! Example B.1. Fortran 77 Application Executing on the Host
! --

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
real*4 m (ldm, *) , alpha , beta
external cublas_sscal
call cublas_sscal (n-p+1, alpha , m(p,q), ldm)
call cublas_sscal (ldm-p+1, beta, m(p,q), 1)
return
end

program matrixmod
implicit none
integer M,N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j
external cublas_init
external cublas_shutdown

do j = 1, N
do i = 1, M

a(i, j) = (i-1)*M + j
enddo

enddo
call cublas_init
call modify (a, M, N, 2, 3, 16.0, 12.0)
call cublas_shutdown
do j = 1 , N

do i = 1 , M
write(*,"(F7.0$)") a(i,j)

enddo
write (*,*) ""

enddo
stop
end

When traditional fixed-form Fortran 77 code is ported to use the cuBLAS library, line length often
increases when the BLAS calls are exchanged for cuBLAS calls. Longer function names and possible
macro expansion are contributing factors. Inadvertently exceeding the maximum line length can lead
to run-time errors that are difficult to find, so care should be taken not to exceed the 72-column limit
if fixed form is retained.

The examples in this chapter show a small application implemented in Fortran 77 on the host and the
same application with the non-thunking wrappers after it has been ported to use the cuBLAS library.

308 Chapter 9. cuBLAS Fortran Bindings

cuBLAS, Release 12.6

The second example should be compiled with ARCH_64 defined as 1 on 64-bit OS system and as 0 on
32-bit OS system. For example for g95 or gfortran, this can be done directly on the command line by
using the option -cpp -DARCH_64=1.

! Example B.2. Same Application Using Non-thunking cuBLAS Calls
!---
#define IDX2F (i,j,ld) ((((j)-1)*(ld))+((i)-1))

subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
implicit none
integer sizeof_real
parameter (sizeof_real=4)
integer ldm, n, p, q

#if ARCH_64
integer*8 devPtrM

#else
integer*4 devPtrM

#endif
real*4 alpha, beta
call cublas_sscal (n-p+1, alpha,
1 devPtrM+IDX2F(p, q, ldm)*sizeof_real,
2 ldm)
call cublas_sscal(ldm-p+1, beta,
1 devPtrM+IDX2F(p, q, ldm)*sizeof_real,
2 1)
return
end
program matrixmod
implicit none
integer M,N,sizeof_real

#if ARCH_64
integer*8 devPtrA

#else
integer*4 devPtrA

#endif
parameter(M=6,N=5,sizeof_real=4)
real*4 a(M,N)
integer i,j,stat
external cublas_init, cublas_set_matrix, cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc, cublas_set_matrix, cublas_get_matrix
do j=1,N

do i=1,M
a(i,j)=(i-1)*M+j

enddo
enddo
call cublas_init
stat= cublas_alloc(M*N, sizeof_real, devPtrA)
if (stat.NE.0) then

write(*,*) "device memory allocation failed"
call cublas_shutdown
stop

endif
stat = cublas_set_matrix(M,N,sizeof_real,a,M,devPtrA,M)
if (stat.NE.0) then

call cublas_free(devPtrA)
write(*,*) "data download failed"
call cublas_shutdown
stop

(continues on next page)

309

cuBLAS, Release 12.6

(continued from previous page)

endif

—

—Code block continues below. Space added for formatting purposes. —

—

call modify(devPtrA, M, N, 2, 3, 16.0, 12.0)
stat = cublas_get_matrix(M, N, sizeof_real, devPtrA, M, a, M)
if (stat.NE.0) then
call cublas_free (devPtrA)
write(*,*) "data upload failed"
call cublas_shutdown
stop
endif
call cublas_free (devPtrA)
call cublas_shutdown
do j = 1 , N

do i = 1 , M
write (*,"(F7.0$)") a(i,j)

enddo
write (*,*) ""

enddo
stop
end

310 Chapter 9. cuBLAS Fortran Bindings

Chapter 10. Interaction with Other
Libraries and Tools

This section describes important requirements and recommendations that ensure correct use of
cuBLAS with other libraries and utilities.

10.1. nvprune

nvprune enables pruning relocatable host objects and static libraries to only contain device code for
the specific target architectures. In case of cuBLAS, particular care must be taken if using nvprune
with compute capabilities, whose minor revision number is different than 0. To reduce binary size,
cuBLAS may only store major revision equivalents of CUDA binary files for kernels reused between
different minor revision versions. Therefore, to ensure that a pruned library does not fail for arbitrary
problems, the user must keep binaries for a selected architecture and all prior minor architectures in
its major architecture.

For example, the following call prunes libcublas_static.a to contain only sm_75 (Turing) and
sm_70 (Volta) cubins:

nvprune --generate-code code=sm_70 --generate-code code=sm_75 libcublasLt_static.a -o�
↪→libcublasLt_static_sm70_sm75.a

which should be used instead of:

nvprune -arch=sm_75 libcublasLt_static.a -o libcublasLt_static_sm75.a

311

cuBLAS, Release 12.6

312 Chapter 10. Interaction with Other Libraries and Tools

Chapter 11. Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

▶ Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were written by Vasily
Volkov of the University of California.

▶ Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide Barbieri of
the University of Rome Tor Vergata.

▶ Portions of the DGEMM and SGEMM library routines optimized for Fermi architecture were de-
veloped by the University of Tennessee. Subsequently, several other routines that are optimized
for the Fermi architecture have been derived from these initial DGEMM and SGEMM implemen-
tations.

▶ The substantial optimizations of the STRSV, DTRSV, CTRSV and ZTRSV library routines were de-
veloped by JonathanHogg of The Science and Technology Facilities Council (STFC). Subsequently,
some optimizations of the STRSM, DTRSM, CTRSM and ZTRSM have been derived from these
TRSV implementations.

▶ Substantial optimizations of the SYMV and HEMV library routines were developed by Ahmad Ab-
delfattah, David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology
(KAUST).

▶ Substantial optimizations of the TRMM and TRSM library routines were developed by Ali Charara,
David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology (KAUST).

▶ This product includes {fmt} - A modern formatting library https://fmt.devCopyright (c) 2012 -
present, Victor Zverovich.

▶ This product includes spdlog - Fast C++ logging library. https://github.com/gabime/spdlog The
MIT License (MIT).

▶ This product includes SIMD Library for Evaluating Elementary Functions, vectorized libm and DFT
https://sleef.orgBoost Software License - Version 1.0 - August 17th, 2003.

▶ This product includes Frozen - a header-only, constexpr alternative to gperf for C++14 users.
https://github.com/serge-sans-paille/frozen Apache License - Version 2.0, January 2004.

▶ This product includes Boost C++ Libraries - free peer-reviewed portable C++ source libraries
https://www.boost.org/ Boost Software License - Version 1.0 - August 17th, 2003.

▶ This product includes Zstandard - a fast lossless compression algorithm, targeting real-time com-
pression scenarios at zlib-level and better compression ratios. https://github.com/facebook/zstd
The BSD License.

313

https://fmt.dev/
https://github.com/gabime/spdlog
https://sleef.org/
https://github.com/serge-sans-paille/frozen
https://www.boost.org/
https://github.com/facebook/zstd

cuBLAS, Release 12.6

314 Chapter 11. Acknowledgements

Chapter 12. Notices

12.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

315

cuBLAS, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

12.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

12.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2012-2024, NVIDIA Corporation & affiliates. All rights reserved

316 Chapter 12. Notices

	Data Layout
	New and Legacy cuBLAS API
	Example Code
	Using the cuBLAS API
	General Description
	Error Status
	cuBLAS Context
	Thread Safety
	Results Reproducibility
	Scalar Parameters
	Parallelism with Streams
	Batching Kernels
	Cache Configuration
	Static Library Support
	GEMM Algorithms Numerical Behavior
	Tensor Core Usage
	CUDA Graphs Support
	64-bit Integer Interface

	cuBLAS Datatypes Reference
	cublasHandle_t
	cublasStatus_t
	cublasOperation_t
	cublasFillMode_t
	cublasDiagType_t
	cublasSideMode_t
	cublasPointerMode_t
	cublasAtomicsMode_t
	cublasGemmAlgo_t
	cublasMath_t
	cublasComputeType_t

	CUDA Datatypes Reference
	cudaDataType_t
	libraryPropertyType_t

	cuBLAS Helper Function Reference
	cublasCreate()
	cublasDestroy()
	cublasGetVersion()
	cublasGetProperty()
	cublasGetStatusName()
	cublasGetStatusString()
	cublasSetStream()
	cublasSetWorkspace()
	cublasGetStream()
	cublasGetPointerMode()
	cublasSetPointerMode()
	cublasSetVector()
	cublasGetVector()
	cublasSetMatrix()
	cublasGetMatrix()
	cublasSetVectorAsync()
	cublasGetVectorAsync()
	cublasSetMatrixAsync()
	cublasGetMatrixAsync()
	cublasSetAtomicsMode()
	cublasGetAtomicsMode()
	cublasSetMathMode()
	cublasGetMathMode()
	cublasSetSmCountTarget()
	cublasGetSmCountTarget()
	cublasLoggerConfigure()
	cublasGetLoggerCallback()
	cublasSetLoggerCallback()

	cuBLAS Level-1 Function Reference
	cublasI<t>amax()
	cublasI<t>amin()
	cublas<t>asum()
	cublas<t>axpy()
	cublas<t>copy()
	cublas<t>dot()
	cublas<t>nrm2()
	cublas<t>rot()
	cublas<t>rotg()
	cublas<t>rotm()
	cublas<t>rotmg()
	cublas<t>scal()
	cublas<t>swap()

	cuBLAS Level-2 Function Reference
	cublas<t>gbmv()
	cublas<t>gemv()
	cublas<t>ger()
	cublas<t>sbmv()
	cublas<t>spmv()
	cublas<t>spr()
	cublas<t>spr2()
	cublas<t>symv()
	cublas<t>syr()
	cublas<t>syr2()
	cublas<t>tbmv()
	cublas<t>tbsv()
	cublas<t>tpmv()
	cublas<t>tpsv()
	cublas<t>trmv()
	cublas<t>trsv()
	cublas<t>hemv()
	cublas<t>hbmv()
	cublas<t>hpmv()
	cublas<t>her()
	cublas<t>her2()
	cublas<t>hpr()
	cublas<t>hpr2()
	cublas<t>gemvBatched()
	cublas<t>gemvStridedBatched()

	cuBLAS Level-3 Function Reference
	cublas<t>gemm()
	cublas<t>gemm3m()
	cublas<t>gemmBatched()
	cublas<t>gemmStridedBatched()
	cublas<t>gemmGroupedBatched()
	cublas<t>symm()
	cublas<t>syrk()
	cublas<t>syr2k()
	cublas<t>syrkx()
	cublas<t>trmm()
	cublas<t>trsm()
	cublas<t>trsmBatched()
	cublas<t>hemm()
	cublas<t>herk()
	cublas<t>her2k()
	cublas<t>herkx()

	BLAS-like Extension
	cublas<t>geam()
	cublas<t>dgmm()
	cublas<t>getrfBatched()
	cublas<t>getrsBatched()
	cublas<t>getriBatched()
	cublas<t>matinvBatched()
	cublas<t>geqrfBatched()
	cublas<t>gelsBatched()
	cublas<t>tpttr()
	cublas<t>trttp()
	cublas<t>gemmEx()
	cublasGemmEx()
	cublasGemmBatchedEx()
	cublasGemmStridedBatchedEx()
	cublasGemmGroupedBatchedEx()
	cublasCsyrkEx()
	cublasCsyrk3mEx()
	cublasCherkEx()
	cublasCherk3mEx()
	cublasNrm2Ex()
	cublasAxpyEx()
	cublasDotEx()
	cublasRotEx()
	cublasScalEx()

	Using the cuBLASLt API
	General Description
	Problem Size Limitations
	Heuristics Cache
	cuBLASLt Logging
	8-bit Floating Point Data Types (FP8) Usage
	Disabling CPU Instructions
	Atomics Synchronization

	cuBLASLt Code Examples
	cuBLASLt Datatypes Reference
	cublasLtClusterShape_t
	cublasLtEpilogue_t
	cublasLtHandle_t
	cublasLtLoggerCallback_t
	cublasLtMatmulAlgo_t
	cublasLtMatmulAlgoCapAttributes_t
	cublasLtMatmulAlgoConfigAttributes_t
	cublasLtMatmulDesc_t
	cublasLtMatmulDescAttributes_t
	cublasLtMatmulHeuristicResult_t
	cublasLtMatmulInnerShape_t
	cublasLtMatmulPreference_t
	cublasLtMatmulPreferenceAttributes_t
	cublasLtMatmulSearch_t
	cublasLtMatmulTile_t
	cublasLtMatmulStages_t
	cublasLtNumericalImplFlags_t
	cublasLtMatrixLayout_t
	cublasLtMatrixLayoutAttribute_t
	cublasLtMatrixTransformDesc_t
	cublasLtMatrixTransformDescAttributes_t
	cublasLtOrder_t
	cublasLtPointerMode_t
	cublasLtPointerModeMask_t
	cublasLtReductionScheme_t

	cuBLASLt API Reference
	cublasLtCreate()
	cublasLtDestroy()
	cublasLtDisableCpuInstructionsSetMask()
	cublasLtGetCudartVersion()
	cublasLtGetProperty()
	cublasLtGetStatusName()
	cublasLtGetStatusString()
	cublasLtHeuristicsCacheGetCapacity()
	cublasLtHeuristicsCacheSetCapacity()
	cublasLtGetVersion()
	cublasLtLoggerSetCallback()
	cublasLtLoggerSetFile()
	cublasLtLoggerOpenFile()
	cublasLtLoggerSetLevel()
	cublasLtLoggerSetMask()
	cublasLtLoggerForceDisable()
	cublasLtMatmul()
	cublasLtMatmulAlgoCapGetAttribute()
	cublasLtMatmulAlgoCheck()
	cublasLtMatmulAlgoConfigGetAttribute()
	cublasLtMatmulAlgoConfigSetAttribute()
	cublasLtMatmulAlgoGetHeuristic()
	cublasLtMatmulAlgoGetIds()
	cublasLtMatmulAlgoInit()
	cublasLtMatmulDescCreate()
	cublasLtMatmulDescInit()
	cublasLtMatmulDescDestroy()
	cublasLtMatmulDescGetAttribute()
	cublasLtMatmulDescSetAttribute()
	cublasLtMatmulPreferenceCreate()
	cublasLtMatmulPreferenceInit()
	cublasLtMatmulPreferenceDestroy()
	cublasLtMatmulPreferenceGetAttribute()
	cublasLtMatmulPreferenceSetAttribute()
	cublasLtMatrixLayoutCreate()
	cublasLtMatrixLayoutInit()
	cublasLtMatrixLayoutDestroy()
	cublasLtMatrixLayoutGetAttribute()
	cublasLtMatrixLayoutSetAttribute()
	cublasLtMatrixTransform()
	cublasLtMatrixTransformDescCreate()
	cublasLtMatrixTransformDescInit()
	cublasLtMatrixTransformDescDestroy()
	cublasLtMatrixTransformDescGetAttribute()
	cublasLtMatrixTransformDescSetAttribute()

	Using the cuBLASXt API
	General description
	Tiling design approach
	Hybrid CPU-GPU computation
	Results reproducibility

	cuBLASXt API Datatypes Reference
	cublasXtHandle_t
	cublasXtOpType_t
	cublasXtBlasOp_t
	cublasXtPinningMemMode_t

	cuBLASXt API Helper Function Reference
	cublasXtCreate()
	cublasXtDestroy()
	cublasXtDeviceSelect()
	cublasXtSetBlockDim()
	cublasXtGetBlockDim()
	cublasXtSetCpuRoutine()
	cublasXtSetCpuRatio()
	cublasXtSetPinningMemMode()
	cublasXtGetPinningMemMode()

	cuBLASXt API Math Functions Reference
	cublasXt<t>gemm()
	cublasXt<t>hemm()
	cublasXt<t>symm()
	cublasXt<t>syrk()
	cublasXt<t>syr2k()
	cublasXt<t>syrkx()
	cublasXt<t>herk()
	cublasXt<t>her2k()
	cublasXt<t>herkx()
	cublasXt<t>trsm()
	cublasXt<t>trmm()
	cublasXt<t>spmm()

	Using the cuBLASDx API
	Using the cuBLAS Legacy API
	Error Status
	Initialization and Shutdown
	Thread Safety
	Memory Management
	Scalar Parameters
	Helper Functions
	Level-1,2,3 Functions
	Converting Legacy to the cuBLAS API
	Examples

	cuBLAS Fortran Bindings
	Interaction with Other Libraries and Tools
	nvprune

	Acknowledgements
	Notices
	Notice
	OpenCL
	Trademarks

