
Floating Point and IEEE 754
Release 12.6

NVIDIA Corporation

Sep 24, 2024

Contents

1 Floating Point 3
1.1 Formats . 3
1.2 Operations and Accuracy . 4
1.3 The Fused Multiply-Add (FMA) . 5

2 Dot Product: An Accuracy Example 7
2.1 Example Algorithms . 7
2.2 Comparison . 8

3 CUDA and Floating Point 9
3.1 Compute Capability 2.0 and Above . 9
3.2 Rounding Modes . 9
3.3 Controlling Fused Multiply-add . 10
3.4 Compiler Flags . 11
3.5 Differences from x86 . 11

4 Considerations for a Heterogeneous World 13
4.1 Mathematical Function Accuracy . 13
4.2 x87 and SSE . 14
4.3 Core Counts . 14
4.4 Verifying GPU Results . 14

5 Concrete Recommendations 17

6 Acknowledgements 19

7 References 21

8 Notices 23
8.1 Notice . 23
8.2 OpenCL . 24
8.3 Trademarks . 24

i

ii

Floating Point and IEEE 754, Release 12.6

Floating Point and IEEE 754 Compliance for NVIDIA GPUs

White paper covering the most common issues related to NVIDIA GPUs.

A number of issues related to floating point accuracy and compliance are a frequent source of confu-
sion on both CPUs and GPUs. The purpose of this white paper is to discuss the most common issues
related to NVIDIA GPUs and to supplement the documentation in the CUDA C++ Programming Guide.

Since the widespread adoption in 1985 of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE
754-1985 [1]) virtually all mainstream computing systems have implemented the standard, including
NVIDIA with the CUDA architecture. IEEE 754 standardizes how arithmetic results should be approx-
imated in floating point. Whenever working with inexact results, programming decisions can affect
accuracy. It is important to consider many aspects of floating point behavior in order to achieve the
highest performance with the precision required for any specific application. This is especially true
in a heterogeneous computing environment where operations will be performed on different types of
hardware.

Understanding some of the intricacies of floating point and the specifics of how NVIDIA hardware
handles floating point is obviously important to CUDA programmers striving to implement correct nu-
merical algorithms. In addition, users of libraries such as cuBLAS and cuFFT will also find it informative
to learn how NVIDIA handles floating point under the hood.

We review some of the basic properties of floating point calculations in Chapter 2. We also discuss the
fusedmultiply-add operator, which was added to the IEEE 754 standard in 2008 [2] and is built into the
hardware of NVIDIA GPUs. In Chapter 3 we work through an example of computing the dot product
of two short vectors to illustrate how different choices of implementation affect the accuracy of the
final result. In Chapter 4 we describe NVIDIA hardware versions and NVCC compiler options that affect
floating point calculations. In Chapter 5 we consider some issues regarding the comparison of CPU
and GPU results. Finally, in Chapter 6 we conclude with concrete recommendations to programmers
that deal with numeric issues relating to floating point on the GPU.

Contents 1

index.html#references__1
index.html#floating-point
index.html#references__2
index.html#dot-product-accuracy-example
index.html#cuda-and-floating-point
index.html#considerations-for-heterogeneous-world
index.html#concrete-recommendations

Floating Point and IEEE 754, Release 12.6

2 Contents

Chapter 1. Floating Point

1.1. Formats

Floating point encodings and functionality are defined in the IEEE 754 Standard [2] last revised in
2008. Goldberg [5] gives a good introduction to floating point and many of the issues that arise.

The standard mandates binary floating point data be encoded on three fields: a one bit sign field,
followed by exponent bits encoding the exponent offset by a numeric bias specific to each format,
and bits encoding the significand (or fraction).

In order to ensure consistent computations across platforms and to exchange floating point data,
IEEE 754 defines basic and interchange formats. The 32 and 64 bit basic binary floating point formats
correspond to the C data types float and double. Their corresponding representations have the
following bit lengths:

For numerical data representing finite values, the sign is either negative or positive, the exponent
field encodes the exponent in base 2, and the fraction field encodes the significand without the most
significant non-zero bit. For example, the value -192 equals (-1)1 x 27 x 1.5, and can be represented
as having a negative sign, an exponent of 7, and a fractional part .5. The exponents are biased by 127
and 1023, respectively, to allow exponents to extend from negative to positive. Hence the exponent
7 is represented by bit strings with values 134 for float and 1030 for double. The integral part of 1. is
implicit in the fraction.

Also, encodings to represent infinity and not-a-number (NaN) data are reserved. The IEEE754Standard
[2] describes floating point encodings in full.

Given that the fraction field uses a limited number of bits, not all real numbers can be represented
exactly. For example the mathematical value of the fraction 2/3 represented in binary is 0.10101010…
which has an infinite number of bits after the binary point. The value 2/3must be rounded first in order

3

index.html#references__2
index.html#references__5
index.html#references__2

Floating Point and IEEE 754, Release 12.6

to be represented as a floating point number with limited precision. The rules for rounding and the
rounding modes are specified in IEEE 754. The most frequently used is the round-to-nearest-or-even
mode (abbreviated as round-to-nearest). The value 2/3 rounded in this mode is represented in binary
as:

The sign is positive and the stored exponent value represents an exponent of -1.

1.2. Operations and Accuracy

The IEEE 754 standard requires support for a handful of operations. These include the arithmetic
operations add, subtract, multiply, divide, square root, fused-multiply-add, remainder, conversion op-
erations, scaling, sign operations, and comparisons. The results of these operations are guaranteed
to be the same for all implementations of the standard, for a given format and rounding mode.

The rules and properties of mathematical arithmetic do not hold directly for floating point arithmetic
because of floating point’s limited precision. For example, the table below shows single precision values
A, B, and C, and the mathematical exact value of their sum computed using different associativity.

A = 21 × 1.00000000000000000000001

B = 20 × 1.00000000000000000000001

C = 23 × 1.00000000000000000000001

(A+B) + C = 23 × 1.01100000000000000000001011

A+ (B + C) = 23 × 1.01100000000000000000001011

Mathematically, (A + B) + C does equal A + (B + C).

Let rn(x) denote one rounding step on x. Performing these same computations in single precision
floating point arithmetic in round-to-nearest mode according to IEEE 754, we obtain:

A+B = 21 × 1.1000000000000000000000110000...

rn(A+B) = 21 × 1.10000000000000000000010

B + C = 23 × 1.0010000000000000000000100100...

rn(B + C) = 23 × 1.00100000000000000000001

A+B + C = 23 × 1.0110000000000000000000101100...

rn (rn(A+B) + C) = 23 × 1.01100000000000000000010

rn (A+ rn(B + C)) = 23 × 1.01100000000000000000001

For reference, the exact, mathematical results are computed as well in the table above. Not only are
the results computed according to IEEE 754 different from the exact mathematical results, but also
the results corresponding to the sum rn(rn(A + B) + C) and the sum rn(A + rn(B + C)) are different from
each other. In this case, rn(A + rn(B + C)) is closer to the correct mathematical result than rn(rn(A + B)
+ C).

4 Chapter 1. Floating Point

Floating Point and IEEE 754, Release 12.6

This example highlights that seemingly identical computations can produce different results even if all
basic operations are computed in compliance with IEEE 754.

Here, the order in which operations are executed affects the accuracy of the result. The results are
independent of the host system. These same results would be obtained using any microprocessor,
CPU or GPU, which supports single precision floating point.

1.3. The Fused Multiply-Add (FMA)

In 2008 the IEEE 754 standard was revised to include the fusedmultiply-add operation (FMA). The FMA
operation computes rn(X×Y +Z)with only one rounding step. Without the FMA operation the result
would have to be computed as rn (rn(X × Y) + Z) with two rounding steps, one for multiply and one
for add. Because the FMA uses only a single rounding step the result is computed more accurately.

Let’s consider an example to illustrate how the FMA operation works using decimal arithmetic first for
clarity. Let’s compute x2−1with four digits of precision after the decimal point, or a total of five digits
of precision including the leading digit before the decimal point.

For x = 1.0008 , the correct mathematical result is x2 − 1 = 1.60064 × 10−4. The closest number
using only four digits after the decimal point is 1.6006 × 10−4. In this case rn

(
x2 − 1

)
= 1.6006 × 10−4

which corresponds to the fusedmultiply-add operation rn (x× x+ (−1)). The alternative is to compute
separate multiply and add steps. For the multiply, x2 = 1.00160064, so rn

(
x2

)
= 1.0016. The final result

is rn
(
rn

(
x2

)
− 1

)
= 1.6000× 10−4.

Rounding themultiply and add separately yields a result that is off by 0.00064. The corresponding FMA
computation is wrong by only 0.00004, and its result is closest to the correct mathematical answer.
The results are summarized below:

x = 1.0008

x2 = 1.00160064

x2 − 1 = 1.60064× 10−4 true value

rn
(
x2 − 1

)
= 1.6006× 10−4 fused multiply-add

rn
(
x2

)
= 1.0016× 10−4

rn
(
rn

(
x2

)
− 1

)
= 1.6000× 10−4 multiply, then add

Below is another example, using binary single precision values:

A = 20 ×1.00000000000000000000001

B = − 20 ×1.00000000000000000000010

rn(A×A+B) = 2−46 ×1.00000000000000000000000

rn (rn(A×A) +B) = 0

In this particular case, computing rn (rn(A×A) +B) as an IEEE 754 multiply followed by an IEEE 754
add loses all bits of precision, and the computed result is 0. The alternative of computing the FMA
rn(A × A + B) provides a result equal to the mathematical value. In general, the fused-multiply-add
operation generates more accurate results than computing one multiply followed by one add. The
choice of whether or not to use the fused operation depends on whether the platform provides the
operation and also on how the code is compiled.

Figure 1 shows CUDA C++ code and output corresponding to inputs A and B and operations from the
example above. The code is executed on two different hardware platforms: an x86-class CPU using SSE

1.3. The Fused Multiply-Add (FMA) 5

index.html#fused-multiply-add-fma__multiply-and-add-code-fragment-and-output-for-x86-and-nvidia-fermi-gpu

Floating Point and IEEE 754, Release 12.6

in single precision, and an NVIDIA GPU with compute capability 2.0. At the time this paper is written
(Spring 2011) there are no commercially available x86 CPUs which offer hardware FMA. Because of
this, the computed result in single precision in SSE would be 0. NVIDIA GPUs with compute capability
2.0 do offer hardware FMAs, so the result of executing this code will be the more accurate one by
default. However, both results are correct according to the IEEE 754 standard. The code fragment
was compiled without any special intrinsics or compiler options for either platform.

The fused multiply-add helps avoid loss of precision during subtractive cancellation. Subtractive can-
cellation occurs during the addition of quantities of similar magnitude with opposite signs. In this
case many of the leading bits cancel, leaving fewer meaningful bits of precision in the result. The
fused multiply-add computes a double-width product during the multiplication. Thus even if subtrac-
tive cancellation occurs during the addition there are still enough valid bits remaining in the product
to get a precise result with no loss of precision.

6 Chapter 1. Floating Point

Chapter 2. Dot Product: An Accuracy
Example

Consider the problemof finding the dot product of two short vectors
→
a and

→
b , bothwith four elements.

▶ ⇀
a =

a1

a2

a3

a4

⇀

b =

b1

b2

b3

b4

⇀
a ·

⇀

b = a1b1 + a2b2 + a3b3 + a4b4

This operation is easy to write mathematically, but its implementation in software involves several
choices. All of the strategies we will discuss use purely IEEE 754 compliant operations.

2.1. Example Algorithms

We present three algorithms which differ in how the multiplications, additions, and possibly fused
multiply-adds are organized. These algorithms are presented in Figure 2, Figure 3, and Figure 4. Each of
the three algorithms is represented graphically. Individual operation are shown as a circle with arrows
pointing from arguments to operations.

The simplest way to compute the dot product is using a short loop as shown in Figure 2. The multipli-
cations and additions are done separately.

Fig. 1: Serial Method to Compute Vectors Dot Product.

7

index.html#example-algorithms__serial-method-to-compute-vectors-dot-product
index.html#example-algorithms__fma-method-to-compute-vectors-dot-product
index.html#comparison__parallel-method-to-reduce-individual-elements-products-into-final-sum
index.html#example-algorithms__serial-method-to-compute-vectors-dot-product

Floating Point and IEEE 754, Release 12.6

The serial method uses a simple loop with separate multiplies and adds to compute the do t product
of the vectors. The final result can be represented as ((((a1 x b1) + (a2 x b2)) + (a3 x b3)) + (a4 x b4)).

Fig. 2: FMA Method to Compute Vector Dot Product.

The FMA method uses a simple loop with fused multiply-adds to compute the dot product of the
vectors. The final result can be represented as a4 x b4 = (a3 x b3 + (a2 x b2 + (a1 x b1 + 0))).

A simple improvement to the algorithm is to use the fusedmultiply-add to do themultiply and addition
in one step to improve accuracy. Figure 3 shows this version.

Yet another way to compute the dot product is to use a divide-and-conquer strategy in which we first
find the dot products of the first half and the second half of the vectors, then combine these results
using addition. This is a recursive strategy; the base case is the dot product of vectors of length 1which
is a single multiply. Figure 4 graphically illustrates this approach. We call this algorithm the parallel
algorithm because the two sub-problems can be computed in parallel as they have no dependencies.
The algorithm does not require a parallel implementation, however; it can still be implemented with a
single thread.

2.2. Comparison

All three algorithms for computing a dot product use IEEE 754 arithmetic and can be implemented
on any system that supports the IEEE standard. In fact, an implementation of the serial algorithm
on multiple systems will give exactly the same result. So will implementations of the FMA or parallel
algorithms. However, results computed by an implementation of the serial algorithm may differ from
those computed by an implementation of the other two algorithms.

Fig. 3: The Parallel Method to Reduce Individual Elements Products into a Final Sum.

The parallel method uses a tree to reduce all the products of individual elements into a final sum. The
final result can be represented as ((a1 x b1) + (a2 x b2)) + ((a3 x b3) + (a4 x b4)).

8 Chapter 2. Dot Product: An Accuracy Example

index.html#example-algorithms__fma-method-to-compute-vectors-dot-product
index.html#comparison__parallel-method-to-reduce-individual-elements-products-into-final-sum

Chapter 3. CUDA and Floating Point

NVIDIA has extended the capabilities of GPUs with each successive hardware generation. Current
generations of the NVIDIA architecture such as Tesla Kxx, GTX 8xx, and GTX 9xx, support both single
and double precision with IEEE 754 precision and include hardware support for fused multiply-add in
both single and double precision. In CUDA, the features supported by the GPU are encoded in the
compute capability number. The runtime library supports a function call to determine the compute
capability of a GPU at runtime; the CUDA C++ Programming Guide also includes a table of compute
capabilities for many different devices [7].

3.1. Compute Capability 2.0 and Above

Devices with compute capability 2.0 and above support both single and double precision IEEE 754 in-
cluding fused multiply-add in both single and double precision. Operations such as square root and
division will result in the floating point value closest to the correct mathematical result in both single
and double precision, by default.

3.2. Rounding Modes

The IEEE 754 standard defines four rounding modes: round-to-nearest, round towards positive, round
towards negative, and round towards zero. CUDA supports all four modes. By default, operations use
round-to-nearest. Compiler intrinsics like the ones listed in the tables below can be used to select
other rounding modes for individual operations.

mode interpretation

rn round to nearest, ties to even

rz round towards zero

ru round towards +�

rd round towards −�

9

index.html#references__7

Floating Point and IEEE 754, Release 12.6

x + y
__fadd_[rn | rz | ru | rd] (x, y)

addition

x * y
__fmul_[rn | rz | ru | rd] (x, y)

multiplication

fmaf (x, y, z)
__fmaf_[rn | rz | ru | rd] (x, y, z)

FMA

1.0f ∕ x
__frcp_[rn | rz | ru | rd] (x)

reciprocal

x ∕ y
__fdiv_[rn | rz | ru | rd] (x, y)

division

sqrtf(x)
__fsqrt_[rn | rz | ru | rd] (x)

square root

x + y
__dadd_[rn | rz | ru | rd] (x, y)

addition

x * y
__dmul_[rn | rz | ru | rd] (x, y)

multiplication

fma (x, y, z)
__fma_[rn | rz | ru | rd] (x, y, z)

FMA

1.0 ∕ x
__drcp_[rn | rz | ru | rd] (x)

reciprocal

x ∕ y
__ddiv_[rn | rz | ru | rd] (x, y)

division

sqrtf(x)
__dsqrt_[rn | rz | ru | rd] (x)

square root

3.3. Controlling Fused Multiply-add

In general, the fused multiply-add operation is faster and more accurate than performing separate
multiply and add operations. However, on occasion you may wish to disable the merging of multiplies
and adds into fused multiply-add instructions. To inhibit this optimization one can write the multiplies
and additions using intrinsics with explicit rounding mode as shown in the previous tables. Operations
written directly as intrinsics are guaranteed to remain independent and will not be merged into fused
multiply-add instructions. It is also possible to disable FMA merging via a compiler flag.

10 Chapter 3. CUDA and Floating Point

Floating Point and IEEE 754, Release 12.6

3.4. Compiler Flags

Compiler flags relevant to IEEE754 operations are -ftz={true|false}, -prec-div={true|false},
and -prec-sqrt={true|false}. These flags control single precision operations on devices of com-
pute capability of 2.0 or later.

mode flags

IEEE 754 mode (default) -ftz=false
-prec-div=true
-prec-sqrt=true

fast mode -ftz=true
-prec-div=false
-prec-sqrt=false

The default IEEE 754 modemeans that single precision operations are correctly rounded and support
denormals, as per the IEEE 754 standard. In the fast mode denormal numbers are flushed to zero, and
the operations division and square root are not computed to the nearest floating point value. The flags
have no effect on double precision or on devices of compute capability below 2.0.

3.5. Differences from x86

NVIDIA GPUs differ from the x86 architecture in that roundingmodes are encodedwithin each floating
point instruction instead of dynamically using a floating point control word. Trap handlers for floating
point exceptions are not supported. On the GPU there is no status flag to indicate when calculations
have overflowed, underflowed, or have involved inexact arithmetic. Like SSE, the precision of each GPU
operation is encoded in the instruction (for x87 the precision is controlled dynamically by the floating
point control word).

3.4. Compiler Flags 11

Floating Point and IEEE 754, Release 12.6

12 Chapter 3. CUDA and Floating Point

Chapter 4. Considerations for a
Heterogeneous World

4.1. Mathematical Function Accuracy

So far we have only considered simple math operations such as addition, multiplication, division, and
square root. These operations are simple enough that computing the best floating point result (e.g.,
the closest in round-to-nearest) is reasonable. For other mathematical operations computing the best
floating point result is harder.

The problem is called the table maker’s dilemma. To guarantee the correctly rounded result, it is not
generally enough to compute the function to a fixed high accuracy. There might still be rare cases
where the error in the high accuracy result affects the rounding step at the lower accuracy.

It is possible to solve the dilemma for particular functions by doing mathematical analysis and formal
proofs [4], but most math libraries choose instead to give up the guarantee of correct rounding. In-
stead they provide implementations of math functions and document bounds on the relative error of
the functions over the input range. For example, the double precision sin function in CUDA is guar-
anteed to be accurate to within 2 units in the last place (ulp) of the correctly rounded result. In other
words, the difference between the computed result and the mathematical result is at most ±2 with
respect to the least significant bit position of the fraction part of the floating point result.

For most inputs the sin function produces the correctly rounded result. Take for example the C code
sequence shown in Figure 6. We compiled the code sequence on a 64-bit x86 platform using gcc
version 4.4.3 (Ubuntu 4.3.3-4ubuntu5).

This shows that the result of computing cos(5992555.0) using a common library differs depending on
whether the code is compiled in 32-bit mode or 64-bit mode.

The consequence is that different math libraries cannot be expected to compute exactly the same
result for a given input. This applies to GPU programming as well. Functions compiled for the GPU will
use the NVIDIA CUDA math library implementation while functions compiled for the CPU will use the
host compiler math library implementation (e.g., glibc on Linux). Because these implementations are
independent and neither is guaranteed to be correctly rounded, the results will often differ slightly.

13

index.html#references__4
index.html#mathematical-function-accuracy__cosine-computation-using-glibc-math-library-when-compiled-with-m32-and-m64

Floating Point and IEEE 754, Release 12.6

4.2. x87 and SSE

One of the unfortunate realities of C compilers is that they are often poor at preserving IEEE 754
semantics of floating point operations [6]. This can be particularly confusing on platforms that sup-
port x87 and SSE operations. Just like CUDA operations, SSE operations are performed on single or
double precision values, while x87 operations often use an additional internal 80-bit precision format.
Sometimes the results of a computation using x87 can depend on whether an intermediate result was
allocated to a register or stored tomemory. Values stored tomemory are rounded to the declared pre-
cision (e.g., single precision for float and double precision for double). Values kept in registers can
remain in extended precision. Also, x87 instructions will often be used by default for 32-bit compiles
but SSE instructions will be used by default for 64-bit compiles.

Because of these issues, guaranteeing a specific precision level on the CPU can sometimes be tricky.
When comparing CPU results to results computed on the GPU, it is generally best to compare using
SSE instructions. SSE instructions follow IEEE 754 for single and doubleprecision.

On 32-bit x86 targets without SSE it can be helpful to declare variables using volatile and force
floating point values to be stored to memory (∕Op in Visual Studio and -ffloat-store in gcc). This
moves results from extended precision registers into memory, where the precision is precisely single
or double precision. Alternately, the x87 control word can be updated to set the precision to 24 or 53
bits using the assembly instruction fldcw or a compiler option such as -mpc32 or-mpc64 in gcc.

4.3. Core Counts

As we have shown in Section 3, the final values computed using IEEE 754 arithmetic can depend on
implementation choices such aswhether to use fusedmultiply-add or whether additions are organized
in series or parallel. These differences affect computation on the CPU and on the GPU.

One way such differences can arise is from differences between the number of concurrent threads
involved in a computation. On the GPU, a common design pattern is to have all threads in a block
coordinate to do a parallel reduction on data within the block, followed by a serial reduction of the
results from each block. Changing the number of threads per block reorganizes the reduction; if the
reduction is addition, then the change rearranges parentheses in the long string of additions.

Even if the same general strategy such as parallel reduction is used on the CPU and GPU, it is common
to have widely different numbers of threads on the GPU compared to the CPU. For example, the GPU
implementation might launch blocks with 128 threads per block, while the CPU implementation might
use 4 threads in total.

4.4. Verifying GPU Results

The same inputs will give the same results for individual IEEE 754 operations to a given precision on
the CPU and GPU. As we have explained, there aremany reasons why the same sequence of operations
may not be performed on the CPU and GPU. The GPU has fused multiply-add while the CPU does not.
Parallelizing algorithms may rearrange operations, yielding different numeric results. The CPU may be
computing results in a precision higher than expected. Finally, many commonmathematical functions
are not required by the IEEE 754 standard to be correctly rounded so should not be expected to yield
identical results between implementations.

14 Chapter 4. Considerations for a Heterogeneous World

index.html#references__6
index.html#dot-product-accuracy-example

Floating Point and IEEE 754, Release 12.6

When porting numeric code from the CPU to the GPU of course it makes sense to use the x86 CPU
results as a reference. But differences between the CPU result and GPU result must be interpreted
carefully. Differences are not automatically evidence that the result computed by the GPU is wrong or
that there is a problem on the GPU.

Computing results in a high precision and then comparing to results computed in a lower precision can
be helpful to see if the lower precision is adequate for a particular application. However, rounding high
precision results to a lower precision is not equivalent to performing the entire computation in lower
precision. This can sometimes be a problem when using x87 and comparing results against the GPU.
The results of the CPU may be computed to an unexpectedly high extended precision for some or all
of the operations. The GPU result will be computed using single or double precision only.

4.4. Verifying GPU Results 15

Floating Point and IEEE 754, Release 12.6

16 Chapter 4. Considerations for a Heterogeneous World

Chapter 5. Concrete Recommendations

The key points we have covered are the following:

Use the fused multiply-add operator.
The fused multiply-add operator on the GPU has high performance and increases the accuracy
of computations. No special flags or function calls are needed to gain this benefit in CUDA pro-
grams. Understand that a hardware fusedmultiply-add operation is not yet available on the CPU,
which can cause differences in numerical results.

Compare results carefully.
Even in the strict world of IEEE 754 operations, minor details such as organization of parentheses
or thread counts can affect the final result. Take this into account when doing comparisons
between implementations.

Know the capabilities of your GPU.
The numerical capabilities are encoded in the compute capability number of your GPU. Devices of
compute capability 2.0 and later are capable of single and double precision arithmetic following
the IEEE 754 standard, and have hardware units for performing fusedmultiply-add in both single
and double precision.

Take advantage of the CUDA math library functions.
These functions are documented in the CUDA C++ Programming Guide [7]. The math library
includes all the math functions listed in the C99 standard [3] plus some additional useful func-
tions. These functions have been tuned for a reasonable compromise between performance and
accuracy. We constantly strive to improve the quality of our math library functionality. Please
let us know about any functions that you require that we do not provide, or if the accuracy or
performance of any of our functions does not meet your needs. Leave comments in the NVIDIA
CUDA forum1 or join the Registered Developer Program2 and file a bug with your feedback.

1 https://forums.nvidia.com/index.php?showforum=62
2 https://developer.nvidia.com/join-nvidia-registered-developer-program

17

index.html#references__7
index.html#references__3
https://forums.nvidia.com/index.php?showforum=62
http://developer.nvidia.com/join-nvidia-registered-developer-program
http://developer.nvidia.com/join-nvidia-registered-developer-program

Floating Point and IEEE 754, Release 12.6

18 Chapter 5. Concrete Recommendations

Chapter 6. Acknowledgements

This paper was authored by Nathan Whitehead and Alex Fit-Florea for NVIDIA Corporation.

Thanks to Ujval Kapasi, Kurt Wall, Paul Sidenblad, Massimiliano Fatica, Everett Phillips, Norbert Juffa,
and Will Ramey for their helpful comments and suggestions.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee
provided that copies bear this notice and the full citation on the first page.

19

Floating Point and IEEE 754, Release 12.6

20 Chapter 6. Acknowledgements

Chapter 7. References

[1] ANSI/IEEE 754-1985. American National Standard - IEEE Standard for Binary Floating-Point Arith-
metic. American National Standards Institute, Inc., New York, 1985.

[2] IEEE 754-2008. IEEE 754–2008 Standard for Floating-Point Arithmetic. August 2008.

[3] ISO/IEC 9899:1999(E). Programming languages - C. American National Standards Institute, Inc.,
New York, 1999.

[4] Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast, and
Jean-Michel Muller. CR-LIBM: A library of correctly rounded elementary functions in double-precision,
February 2005.

[5] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys, March 1991. Edited reprint available at: http://download.oracle.com/docs/cd/
E19957-01/806-3568/ncg_goldberg.html.

[6] David Monniaux. The pitfalls of verifying floating-point computations. ACM Transactions on Pro-
gramming Languages and Systems, May 2008.

[7] NVIDIA. CUDA C++ Programming Guide Version 10.2, 2019.

21

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Floating Point and IEEE 754, Release 12.6

22 Chapter 7. References

Chapter 8. Notices

8.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

23

Floating Point and IEEE 754, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

8.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

8.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2011-2024, NVIDIA Corporation & affiliates. All rights reserved

24 Chapter 8. Notices

	Floating Point
	Formats
	Operations and Accuracy
	The Fused Multiply-Add (FMA)

	Dot Product: An Accuracy Example
	Example Algorithms
	Comparison

	CUDA and Floating Point
	Compute Capability 2.0 and Above
	Rounding Modes
	Controlling Fused Multiply-add
	Compiler Flags
	Differences from x86

	Considerations for a Heterogeneous World
	Mathematical Function Accuracy
	x87 and SSE
	Core Counts
	Verifying GPU Results

	Concrete Recommendations
	Acknowledgements
	References
	Notices
	Notice
	OpenCL
	Trademarks

