
Volta Compatibility Guide
Release 12.6

NVIDIA Corporation

Sep 24, 2024

Contents

1 About this Document 3

2 Application Compatibility on Volta 5

3 Verifying Volta Compatibility for Existing Applications 7
3.1 Applications Using CUDA Toolkit 8.0 or Earlier . 7
3.2 Applications Using CUDA Toolkit 9.0 . 7

4 Building Applications with Volta Support 9
4.1 Applications Using CUDA Toolkit 8.0 or Earlier . 9
4.2 Applications Using CUDA Toolkit 9.0 . 10
4.3 Independent Thread Scheduling Compatibility . 11

5 Revision History 13

6 Notices 15
6.1 Notice . 15
6.2 OpenCL . 16
6.3 Trademarks . 16

i

ii

Volta Compatibility Guide, Release 12.6

Volta Compatibility Guide for CUDA Applications

The guide to building CUDA applications for GPUs based on the NVIDIA Volta Architecture.

Contents 1

Volta Compatibility Guide, Release 12.6

2 Contents

Chapter 1. About this Document

This application note, Volta Compatibility Guide for CUDA Applications, is intended to help developers
ensure that their NVIDIA® CUDA® applicationswill run onGPUsbased on theNVIDIA® Volta Architecture.
This document provides guidance to developers who are already familiar with programming in CUDA
C++ and want to make sure that their software applications are compatible with Volta.

3

Volta Compatibility Guide, Release 12.6

4 Chapter 1. About this Document

Chapter 2. Application Compatibility on
Volta

The NVIDIA CUDA C++ compiler, nvcc, can be used to generate both architecture-specific cubin files
and forward-compatible PTX versions of each kernel. Each cubin file targets a specific compute-
capability version and is forward-compatible only with GPU architectures of the same major version
number. For example, cubin files that target compute capability 3.0 are supported on all compute-
capability 3.x (Kepler) devices but are not supported on compute-capability 5.x (Maxwell) or 6.x (Pascal)
devices. For this reason, to ensure forward compatibility with GPU architectures introduced after the
application has been released, it is recommended that all applications include PTX versions of their
kernels.

Note: CUDA Runtime applications containing both cubin and PTX code for a given architecture will
automatically use the cubin by default, keeping the PTX path strictly for forward-compatibility pur-
poses.

Applications that already include PTX versions of their kernels should work as-is on Volta-based GPUs.
Applications that only support specific GPU architectures via cubin files, however, will need to be up-
dated to provide Volta-compatible PTX or cubins.

5

Volta Compatibility Guide, Release 12.6

6 Chapter 2. Application Compatibility on Volta

Chapter 3. Verifying Volta Compatibility
for Existing Applications

The first step is to check that Volta-compatible device code (at least PTX) is compiled into the appli-
cation. The following sections show how to accomplish this for applications built with different CUDA
Toolkit versions.

3.1. Applications Using CUDA Toolkit 8.0 or
Earlier

CUDA applications built using CUDA Toolkit versions 2.1 through 8.0 are compatible with Volta as long
as they are built to include PTX versions of their kernels. To test that PTX JIT is working for your
application, you can do the following:

▶ Download and install the latest driver from http://www.nvidia.com/drivers.

▶ Set the environment variable CUDA_FORCE_PTX_JIT=1.

▶ Launch your application.

When starting a CUDA application for the first time with the above environment flag, the CUDA driver
will JIT-compile the PTX for each CUDA kernel that is used into native cubin code.

If you set the environment variable above and then launch your program and it works properly, then
you have successfully verified Volta compatibility.

Note: Be sure to unset the CUDA_FORCE_PTX_JIT environment variable when you are done testing.

3.2. Applications Using CUDA Toolkit 9.0

CUDA applications built using CUDA Toolkit 9.0 are compatible with Volta as long as they are built to
include kernels in either Volta-native cubin format (see Building Applications with Volta Support) or
PTX format (see Applications Using CUDA Toolkit 8.0 or Earlier) or both.

7

http://www.nvidia.com/drivers
index.html#building-applications-with-volta-support
index.html#verifying-volta-compatibility-using-cuda-8-0

Volta Compatibility Guide, Release 12.6

8 Chapter 3. Verifying Volta Compatibility for Existing Applications

Chapter 4. Building Applications with
Volta Support

When a CUDA application launches a kernel, the CUDA Runtime determines the compute capability of
each GPU in the system and uses this information to automatically find the best matching cubin or
PTX version of the kernel that is available. If a cubin file supporting the architecture of the target GPU
is available, it is used; otherwise, the CUDA Runtime will load the PTX and JIT-compile that PTX to the
GPU’s native cubin format before launching it. If neither is available, then the kernel launch will fail.

The method used to build your application with either native cubin or at least PTX support for Volta
depend on the version of the CUDA Toolkit used.

The main advantages of providing native cubins are as follows:

▶ It saves the end user the time it takes to JIT-compile kernels that are available only as PTX. All
kernels compiled into the application must have native binaries at load time or else they will be
built just-in-time from PTX, including kernels from all libraries linked to the application, even if
those kernels are never launched by the application. Especially when using large libraries, this
JIT compilation can take a significant amount of time. The CUDA driver will cache the cubins
generated as a result of the PTX JIT, so this is mostly a one-time cost for a given user, but it is
time best avoided whenever possible.

▶ PTX JIT-compiled kernels often cannot take advantage of architectural features of newer GPUs,
meaning that native-compiled code may be faster or of greater accuracy.

4.1. Applications Using CUDA Toolkit 8.0 or
Earlier

The compilers included in CUDA Toolkit 8.0 or earlier generate cubin files native to earlier NVIDIA ar-
chitectures such as Maxwell and Pascal, but they cannot generate cubin files native to the Volta ar-
chitecture. To allow support for Volta and future architectures when using version 8.0 or earlier of the
CUDA Toolkit, the compiler must generate a PTX version of each kernel.

Below are compiler settings that could be used to build mykernel.cu to run on Maxwell or Pascal
devices natively and on Volta devices via PTX JIT.

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch= clause
of the -gencode= command-line option to nvcc specifies the front-end compilation target and must
always be a PTX version. The code= clause specifies the back-end compilation target and can either

9

Volta Compatibility Guide, Release 12.6

be cubin or PTX or both. Only the back-end target version(s) specified by the code= clause will be
retained in the resulting binary; at least one must be PTX to provide Volta compatibility.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
-Xcompiler "∕EHsc ∕W3 ∕nologo ∕O2 ∕Zi ∕MT"
-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_61,code=compute_61
--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

∕usr∕local∕cuda∕bin∕nvcc
-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_61,code=compute_61
-O2 -o mykernel.o -c mykernel.cu

Alternatively, you may be familiar with the simplified nvcc command-line option -arch=sm_XX, which
is a shorthand equivalent to the followingmore explicit -gencode= command-line options used above.
-arch=sm_XX expands to the following:

-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a PTX back-end
target by default, it can only specify a single target cubin architecture at a time, and it is not possible
to use multiple -arch= options on the same nvcc command line, which is why the examples above
use -gencode= explicitly.

4.2. Applications Using CUDA Toolkit 9.0

With version 9.0 of the CUDA Toolkit, nvcc can generate cubin files native to the Volta architecture
(compute capability 7.0). When using CUDA Toolkit 9.0, to ensure that nvcc will generate cubin files
for all recent GPU architectures as well as a PTX version for forward compatibility with future GPU
architectures, specify the appropriate -gencode= parameters on the nvcc command line as shown in
the examples below.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
-Xcompiler "∕EHsc ∕W3 ∕nologo ∕O2 ∕Zi ∕MT"
-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70

(continues on next page)

10 Chapter 4. Building Applications with Volta Support

Volta Compatibility Guide, Release 12.6

(continued from previous page)

-gencode=arch=compute_70,code=compute_70
--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

∕usr∕local∕cuda∕bin∕nvcc
-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_70,code=compute_70
-O2 -o mykernel.o -c mykernel.cu

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch= clause
of the -gencode= command-line option to nvcc specifies the front-end compilation target and must
always be a PTX version. The code= clause specifies the back-end compilation target and can either be
cubin or PTX or both. Only the back-end target version(s) specified by the code= clausewill be retained
in the resulting binary; at least one should be PTX to provide compatibility with future architectures.

Also, note that CUDA 9.0 removes support for compute capability 2.x (Fermi) devices. Any compute_2x
and sm_2x flags need to be removed from your compiler commands.

4.3. Independent Thread Scheduling
Compatibility

The Volta architecture introduces Independent Thread Scheduling among threads in a warp. If the
developer made assumptions about warp-synchronicity,1 this feature can alter the set of threads par-
ticipating in the executed code compared to previous architectures. Please see Compute Capability
7.0 in the CUDA C++ Programming Guide for details and corrective actions. To aid migration Volta
developers can opt-in to the Pascal scheduling model with the following combination of compiler op-
tions.

nvcc -arch=compute_60 -code=sm_70 ...

1 Warp-synchronous refers to an assumption that threads in the same warp are synchronized at every instruction and can,
for example, communicate values without explicit synchronization.

4.3. Independent Thread Scheduling Compatibility 11

Volta Compatibility Guide, Release 12.6

12 Chapter 4. Building Applications with Volta Support

Chapter 5. Revision History

Version 1.0

▶ Initial public release.

Version 1.1

▶ Use CUDA C++ instead of CUDA C/C++

▶ Updated references to the CUDA C++ Programming Guide and CUDA C++ Best Practices Guide.

13

Volta Compatibility Guide, Release 12.6

14 Chapter 5. Revision History

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

15

Volta Compatibility Guide, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2017-2024, NVIDIA Corporation & affiliates. All rights reserved

16 Chapter 6. Notices

	About this Document
	Application Compatibility on Volta
	Verifying Volta Compatibility for Existing Applications
	Applications Using CUDA Toolkit 8.0 or Earlier
	Applications Using CUDA Toolkit 9.0

	Building Applications with Volta Support
	Applications Using CUDA Toolkit 8.0 or Earlier
	Applications Using CUDA Toolkit 9.0
	Independent Thread Scheduling Compatibility

	Revision History
	Notices
	Notice
	OpenCL
	Trademarks

