libNVVM API v4.0
Release gpgpu

NVIDIA Corporation

Aug 11, 2025

Contents

1 Introduction
2 Thread Safety
3 Module

4 Error Handling

4.1 Enumerations
4.2 Functions

5 General Information Query

5.1 Functions

6 Compilation

6.1 Functions
6.2 Typedefs

7.1 Notice
7.2 OpenCL
7.3 Trademarks

7 Notices
Index

11
11

13
14
19

21
21
22
22

23

libNVVM API v4.0, Release gpgpu

libNVVM API v4.0 Reference Manual

Contents 1

libNVVM API v4.0, Release gpgpu

2 Contents

Chapter 1. Introduction

libNVVM API provides an interface for generating PTX code from both binary and text NVVM IR in-
puts. Compatible input can be generated by tools and libraries that produce LLVM 7.0 IR and bitcode.
Support for reading the text NVVM IR representation is deprecated and may be removed in a later
release.

libNVVM API v4.0, Release gpgpu

4 Chapter 1. Introduction

Chapter 2. Thread Safety

libNVVM API provides a thread-safe interface to libNVVM. Clients can take advantage of improved
compilation speeds by spawning multiple compilation threads concurrently.

libNVVM API v4.0, Release gpgpu

6 Chapter 2. Thread Safety

Chapter 3. Module

This chapter presents the API of the libNVVM library. Here is a list of all modules:
» Error Handling
» General Information Query

» Compilation

libNVVM API v4.0, Release gpgpu

8 Chapter 3. Module

Chapter 4. Error Handling

NVVM API call result code.

const char * (nvvmResult result)
Get the message string for the given code.

enum nvvmResult
NVVM API call result code.

Values:

enumerator NVVM_SUCCESS

enumerator NVVM_ERROR_OUT_OF_MEMORY

enumerator NVVM_ERROR_PROGRAM_CREATION_FAILURE
enumerator NVVM_ERROR_IR_VERSION_MISMATCH
enumerator NVVM_ERROR_INVALID_INPUT

enumerator NVVM_ERROR_INVALID_PROGRAM
enumerator NVVM_ERROR_INVALID_IR

enumerator NVVM_ERROR_INVALID_OPTION

libNVVM API v4.0, Release gpgpu

enumerator NVVM_ERROR_NO_MODULE_IN_PROGRAM

enumerator NVVM_ERROR_COMPILATION

enumerator NVVM_ERROR_CANCELLED

const char *nvvmGetErrorString(result)
Get the message string for the given code.
Parameters
result - [in] NVVM API result code.
Returns
Message string for the given code.
10

Chapter 4. Error Handling

Chapter 5. General Information Query

nvvmResult (int *majorIR, int *minorIR, int *majorDbg, int *minorDbg)
Get the NVVM IR version.

nvvmResult (const char *arch, int *major)
Get the LLVM IR version guaranteed to be supported by NVVM.

nvvmResult (int *major, int *minor)
Get the NVVM version.

nvvmIRVersion(int *majorlR, int *minorIR, int *majorDbg, int *minorDbg)
Get the NVVM IR version.

Parameters

majorIR - [out] NVVM IR major version number.
minorIR - [out] NVVM IR minor version number.
majorDbg - [out] NVVM IR debug metadata major version number.
minorDbg - [out] NVVM IR debug metadata minor version number.

Returns

nvvmLLVMVersion (const char *arch, int *major)
Get the LLVM IR version guaranteed to be supported by NVVM.

The valid arch strings are the ones supported by

Parameters

arch - [in] Architecture string.

LLVM - [out] IR version number.

11

libNVVM API v4.0, Release gpgpu

Returns

nvvmVersion(int *major, int *minor)
Get the NVVM version.

Parameters

major - [out] NVVM major version number.

minor - [out] NVVM minor version number.

Returns

12

Chapter 5. General Information Query

Chapter 6. Compilation

nvvmResult (nvwmProgram prog, const char *buffer, size_t size, const
char *name)
Add a module level NVVM IR to a program.

nvvmResult (nvvmProgram prog, int numOptions, const char **options)
Compile the NVVM program.

nvvmResult (nvvmProgram *prog)
Create a program, and set the value of its handle to *prog.

nvvmResult (nvvmProgram *prog)
Destroy a program.

nvvmResult (nvvmProgram prog, char *buffer)
Get the compiled result.

nvvmResult (nvvmProgram prog, size_t *bufferSizeRet)
Get the size of the compiled result.

nvvmResult (nvwvmProgram prog, char *buffer)
Get the Compiler/Verifier Message.

nvvmResult (nvvmProgram prog, size_t *bufferSizeRet)
Get the Size of Compiler/Verifier Message.

nvvmResult (nvwmProgram prog, const char *buffer, size_t size,
const char *name)
Add a module level NVVM IR to a program.

nvvmResult (nvvmProgram prog, int numOptions, const char **options)
Verify the NVVM program.

NVVM Program.

13

libNVVM API v4.0, Release gpgpu

nvvmAddModuleToProgram(prog, const char *buffer, size_t size, const
char *name)

Add a module level NVVM IR to a program.

The buffer should contain an NVVM IR module. The module should have NVVM IR either in the
LLVM 7.0.1 bitcode representation or in the LLVM 7.0.1 text representation. Support for reading
the text representation of NVVM IR is deprecated and may be removed in a later version.

Parameters

prog - [in] NVVM program.
buffer - [in] NVVM IR module in the bitcode or text representation.
size - [in] Size of the NVVM IR module.

name - [in] Name of the NVVM IR module. If NULL, “<unnamed>" is used as the
name.

Returns

nvvmCompileProgram(prog, int numOptions, const char **options)
Compile the NVVM program.

The NVVM IR modules in the program will be linked at the IR level. The linked IR program is
compiled to PTX.

The target datalayout in the linked IR program is used to determine the address size (32bit vs
64bit).

The valid compiler options are:

-g (enable generation of full debugging information). Full debug support is only valid with
‘-opt=0’. Debug support requires the input module to utilize NVVM IR Debug Metadata. Line
number (line info) only generation is also enabled via NVVM IR Debug Metadata, there is no
specific libNVVM API flag for that case.

-opt=
0 (disable optimizations)
3 (default, enable optimizations)
-arch=
compute_75 (default)
compute_80

compute_87

14

Chapter 6. Compilation

libNVVM API v4.0, Release gpgpu

compute_89
compute_90
compute_90a
compute_100
compute_100a
compute_100f
compute_103
compute_103a
compute_103f
compute_110
compute_110a
compute_110f
compute_120
compute_120a
compute_120f
compute_121
compute_121a
compute_121f
-ftz=

O (default, preserve denormal values, when performing single-precision floating-point
operations)

1 (flush denormal values to zero, when performing single-precision floating-point oper-
ations)

-prec-sqrt=
0 (use a faster approximation for single-precision floating-point square root)

1 (default, use IEEE round-to-nearest mode for single-precision floating-point square
root)

-prec-div=
0 (use a faster approximation for single-precision floating-point division and reciprocals)

1 (default, use IEEE round-to-nearest mode for single-precision floating-point division
and reciprocals)

-fma=
O (disable FMA contraction)
1 (default, enable FMA contraction)

-jump-table-density=[0-101] Specify the case density percentage in switch statements, and
use it as a minimal threshold to determine whether jump table(brx.idx instruction) will be
used to implement a switch statement. Default value is 101. The percentage ranges from O
to 101 inclusively.

6.1. Functions 15

libNVVM API v4.0, Release gpgpu

» -gen-lto (Generate LTO IR instead of PTX).

Parameters

» prog - [in] NVVM program.
» numOptions - [in] Number of compiler options passed.
» options - [in] Compiler options in the form of C string array.

Returns

NVVM_SUCCESS
NVVM_ERROR_OUT_OF_MEMORY
NVVM_ERROR_IR_VERSION_MISMATCH
NVVM_ERROR_INVALID_PROGRAM
NVVM_ERROR_INVALID_OPTION
NVVM_ERROR_NO_MODULE_IN_PROGRAM
NVVM_ERROR_COMPILATION

vV Vv vV vV VvV VY

nvvmResult nvvmCreateProgram(nvvmProgram *prog)
Create a program, and set the value of its handle to *prog.

See also:
nvvmDestroyProgram()
Parameters
prog - [in] NVVM program.

Returns

» NVVM_SUCCESS
» NVVM_ERROR_OUT_OF_MEMORY
» NVVM_ERROR_INVALID_PROGRAM

nvvmResult nvvmDestroyProgram(nvvmProgram *prog)
Destroy a program.

See also:

nvvmCreateProgram()

Parameters
prog - [in] NVVM program.

Returns

» NVVM_SUCCESS

16 Chapter 6. Compilation

libNVVM API v4.0, Release gpgpu

nvvmGetCompiledResult (prog, char *buffer)
Get the compiled result.

The result is stored in the memory pointed to by buffer.

Parameters

prog - [in] NVVM program.
buffer - [out] Compiled result.

Returns

nvvmGetCompiledResultSize(prog, size_t *bufferSizeRet)
Get the size of the compiled result.

Parameters

prog - [in] NVVM program.
bufferSizeRet - [out] Size of the compiled result (including the trailing NULL).

Returns

nvvmGetProgramLog (prog, char *buffer)
Get the Compiler/Verifier Message.

The NULL terminated message string is stored in the memory pointed to by buffer when the
return value is NVVM_SUCCESS.

Parameters

prog - [in] NVVM program.
buffer - [out] Compilation/Verification log.

Returns

nvvmGetProgramLogSize(prog, size_t *bufferSizeRet)
Get the Size of Compiler/Verifier Message.

The size of the message string (including the trailing NULL) is stored into bufferSizeRet when
the return value is NVVM_SUCCESS.

Parameters

6.1. Functions 17

libNVVM API v4.0, Release gpgpu

prog - [in] NVVM program.

bufferSizeRet - [out] Size of the compilation/verification log (including the
trailing NULL).

Returns

nvvmLazyAddModuleToProgram(prog, const char *buffer, size_t size,
const char *name)

Add a module level NVVM IR to a program.

The buffer should contain an NVVM IR module. The module should have NVVM IR in the LLVM
7.0.1 bitcode representation.

A module added using this APl is lazily loaded - the only symbols loaded are those that are required
by module(s) loaded using nvwvmAddModuleToProgram. It is an error for a program to have all
modules loaded using this API. Compiler may also optimize entities in this module by making
them internal to the linked NVVM IR module, making them eligible for other optimizations. Due
to these optimizations, this API to load a module is more efficient and should be used where
possible.

Parameters

prog - [in] NVVM program.
buffer - [in] NVVM IR module in the bitcode representation.
size - [in] Size of the NVVM IR module.

name - [in] Name of the NVVM IR module. If NULL, “<unnamed>" is used as the
name.

Returns

nvvmVerifyProgram(prog, int numOptions, const char **options)
Verify the NVVM program.

The valid compiler options are:

Same as for

See also:

Parameters

18

Chapter 6. Compilation

libNVVM API v4.0, Release gpgpu

» prog - [in] NVVM program.
» numOptions - [in] Number of compiler options passed.
» options - [in] Compiler options in the form of C string array.

Returns

NVVM_SUCCESS
NVVM_ERROR_OUT_OF_MEMORY
NVVM_ERROR_IR_VERSION_MISMATCH
NVVM_ERROR_INVALID_PROGRAM
NVVM_ERROR_INVALID_IR
NVVM_ERROR_INVALID_OPTION
NVVM_ERROR_NO_MODULE_IN_PROGRAM

vV vV vV vV VvV VY

6.2. Typedefs

typedef struct _nvvmProgram *nvvmProgram
NVVM Program.

An opaque handle for a program.

6.2. Typedefs 19

libNVVM API v4.0, Release gpgpu

20 Chapter 6. Compilation

Chapter 7. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

21

libNVVM API v4.0, Release gpgpu

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

22 Chapter 7. Notices

Index

N

nvvmAddModuleToProgram (C++ function),
nvvmCompileProgram (C++ function),
nvvmCreateProgram (C++ function),
nvvmDestroyProgram (C++ function),
nvvmGetCompiledResult (C++ function),
nvvmGetCompiledResultSize (C++ function),

nvvmGetErrorString (C++ function),
nvvmGetProgramlLog (C++ function),
nvvmGetProgramLogSize (C++ function),
nvvmIRVersion (C++ function),
nvvmLazyAddModuleToProgram (C++ function),

nvvmLLVMVersion (C++ function),

nvvmProgram (C++ type),

nvvmResult (C++ enum),

nvvmResult: :NVVM_ERROR_CANCELLED (C++
enumerator),

nvvmResult: :NVVM_ERROR_COMPILATION (C++
enumerator),

nvvmResult: :NVVM_ERROR_INVALID_INPUT
(C++ enumerator),

nvvmResult : :NVVM_ERROR_INVALID_IR (C++
enumerator),

nvvmResult: :NVVM_ERROR_INVALID_OPTION
(C++ enumerator),

nvvmResult: :NVVM_ERROR_INVALID_PROGRAM
(C++ enumerator),

nvvmResult: :NVVM_ERROR_IR_VERSION_MISMATCH
(C++ enumerator),

nvvmResult: :NVVM_ERROR_NO_MODULE_IN_PROGRAM
(C++ enumerator),

nvvmResult: :NVVM_ERROR_OUT_OF_MEMORY
(C++ enumerator),

nvvmResult: :NVVM_ERROR_PROGRAM_CREATION_FAILURE
(C++ enumerator),

nvvmResult : :NVVM_SUCCESS (C++ enumerator),

nvvmVerifyProgram (C++ function),
nvvmVersion (C++ function),

23

	Introduction
	Thread Safety
	Module
	Error Handling
	Enumerations
	Functions

	General Information Query
	Functions

	Compilation
	Functions
	Typedefs

	Notices
	Notice
	OpenCL
	Trademarks

	Index

