

RN-09353-003 | August 30, 2022
Advance Information | Subject to Change

6.1.1 Release Notes

DEEPSTREAM SDK 6.1.1 FOR
NVIDIA DGPU/X86 AND JETSON

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | ii

RN-09353-003

TABLE OF CONTENTS

1.0 ABOUT THIS RELEASE ... 3
1.1 What’s New ... 3

 DS 6.1.1 .. 3
 DS 6.1 .. 4
 Graph Composer 2.0.1 ... 6

1.2 Contents of this Release ... 6
1.3 Documentation in this Release ... 7
1.4 DIFFERENCES WITH DEEPSTREAM 6.1 .. 7

2.0 LIMITATIONS .. 8

3.0 NOTES...10
3.1 Applications May Be Deployed in a Docker Container ... 10
3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display 13
3.3 Installing DeepStream on Jetson ... 13
3.4 Triton Inference Server In Deepstream.. 14
3.5 Deprecation Plan in the Upcoming Releases .. 15

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 3

1.0 ABOUT THIS RELEASE

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA®
Ampere®, NVIDIA® Jetson AGX Xavier™, NVIDIA® Jetson Xavier™ NX, and NVIDIA® Jetson
AGX Orin™.

1.1 WHAT’S NEW

The following new features are supported in this DeepStream SDK release:

 DS 6.1.1
 Supports Triton 22.07 and Rivermax v1.11.5
 Jetson package based on JP 5.0.2 GA
 Enhancements in new Gst-nvinferserver plugin to support CUDA shared memory (on

x86/dGPU) for input tensors in gRPC mode.
 Supports YoloV3 post-processing on CUDA
 DeepSORT tracker support (Alpha)
 Cloud to Device support for AMQP
 Enhance nvinferserver to work with Preprocess plugin
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled by

exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.1.1 Release.

 Performance optimizations.
 Improved NVDCF tracker.
 Supporting parallel multiple models inferencing in one pipeline:

https://github.com/NVIDIA-AI-IOT/deepstream_parallel_inference_app
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch:
release/tao3.0_ds6.1.1ga) integrated into SDK

https://github.com/NVIDIA-AI-IOT/deepstream_parallel_inference_app

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 4

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao3.0_ds6.1.1ga).

 Improved stability
 New Sample TritonOnnxYolo added to run Triton inference with dynamic-sized output

tensors even with zero bytes using Onnx YoloV3 models. Inside the sample, A DS-
Triton(gst-nvinferserver) custom-lib implementation shows users how to do multi-
input tensors preprocessing and mixed-batch tensors postprocessing.

 Python bindings and samples updates:

● New sample application deepstream-demux-muti-in-multi-out added to
demonstrate demuxing multi-stream batch into separate output streams

● Updated Jupyter notebook deepstream_test_4.ipynb
● Minor bindings fixes

 DS 6.1
 Supports Ubuntu 20.04 and GStreamer 1.16 version both on dGPU/x86 and Jetson.

Note: DS 6.1 for Jetson is based on JP 5.0.1 DP which is for developer preview only.

 Supports Triton 22.03.
 Stereo depth camera support.
 NMOS (Networked Media Open Specifications) support.
 Mellanox NIC support for transmitting Compressed/Uncompressed streams.
 UCX/RDMA support for efficient data transmission across multiple DeepStream

pipelines running on different nodes.
 Post processing plugin to support inference post processing.
 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion

recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao3.0_ds6.1ga).

 Enhancements in new Gst-nvstreammux plugin to support video conferencing use
cases.

New nvstreammux can be enabled by exporting USE_NEW_NVSTREAMMUX=yes. For
more information, see the “Gst-nvstreammux” section in the NVIDIA DeepStream SDK
Developer Guide 6.1 Release.

 Enhancements in Gst-audio/video template plugins.
 Performance optimizations.
 Improved NVDCF tracker.
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch:
release/tao3.0_ds6.1ga) integrated into SDK.

 New sample applications in Python:

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 5

● deepstream-preprocess-test - multi-stream pipeline using nvdspreprocess plugin
with custom ROIs

● deepstream-test3 – updated to support Triton inferencing in addition to TRT

 New plugins:

● Gst-nvdsucx plugin to send and receive data over RDMA.
● Gst-nvds3dfilter plugin for stereo depth camera.
● Gst-nvdspostprocess plugin for having separate postprocessing on inference

output.
● Gst-nvdsmetautils contains two plugins - nvdsmetainsert and nvdsmetaextract,

which can be used for NvDs or custom metadata serialization and de-serialization.

Use case example: serialized custom metadata can be embedded into H264
bitstream, transmitted, received over remote host, decoded and de-serialized.

● Gst-nvdsudpsink plugin for supporting Mellanox NIC for transmission. For more
details Refer to the “Gst-nvdsudpsink“ section in the NVIDIA DeepStream SDK
Developer Guide 6.1 Release.

 New sample applications:

● DeepStream NMOS Application: This application demonstrates how to create a
DeepStream app as an NMOS Node.

● DeepStream UCX test Applications:

• DeepStream UCX test 1: Demonstrates how to use the communication plugin
Gst-nvdsucx to send and receive video data over RDMA without any special
metadata.

• DeepStream UCX test 2: Demonstrates how to use the communication plugin
Gst-nvdsucx to send and receive video/metadata data over RDMA along with
the custom serialization and deserialization through the
libnvds_video_metadata_serialization.so library.

• DeepStream UCX test 3: Demonstrates how to use the communication plugin
Gst-nvdsucx to send and receive audio/metadata data over RDMA using the
custom audio serialization and deserialization through the
libnvds_audio_metadata_serialization.so library.

● DeepStream 3D Depth Camera Reference App: Demonstrates how to setup depth
capture, depth render, 3D-point-cloud processing and 3D-points render pipelines
over DS3D interfaces and custom-libs of ds3d::dataloader,
ds3d::datafilter and ds3d::datarender.

DeepStream 6.0 Applications can be migrated to DeepStream 6.1.1. Refer to the “Application
Migration to DeepStream 6.1.1 from DeepStream 6.0” section in the NVIDIA DeepStream
SDK Developer Guide 6.1.1 Release.

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 6

 Graph Composer 2.0.1
 Graph Execution Engine

● Graph runtime to execute graphs implemented based on Graph Specification
● Supported on Ubuntu 20.04 x86_64 and NVIDIA Jetson

 Graph composer tools

● Composer with new UI

• x86 only (Ubuntu 20.04)
• User friendly editor view
• Registry list in view
• Graph edit with various options
• Graph open/save
• Property editor
• Graph Launcher
• Container Builder Launcher
• Registry options
• Extension Generator
• Subgraph support

● Registry CLI

• Local and NVIDIA Cloud repository
• Version management based on Semantic versioning
• Command Line Interface tool
• Graph install for graph deploy

● Container Builder CLI

1.2 CONTENTS OF THIS RELEASE

This release includes the following:

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK Developer Guide 6.1.1 Release
for a detailed description of the contents of the DeepStream release package. The
Developer Guide also contains other information to help you get started with
DeepStream, including information about system software and hardware requirements
and external software dependencies that you must install before you use the SDK.

● For detailed information about GStreamer plugins, metadata usage, see the
“DeepStream Plugin Guide” section in the NVIDIA DeepStream SDK Developer Guide
6.1.1 Release.

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 7

● For detailed troubleshooting information and frequently asked questions, see the
“DeepStream Troubleshooting and FAQ Guide” section in the NVIDIA DeepStream
SDK Developer Guide 6.1.1 Release.

 Graph Composer 2.0.1 and DeepStream reference graphs for dGPU and Jetson.
 DeepStream SDK for dGPU and Jetson Software License Agreement (SLA).
 LICENSE.txt contains the license terms of third-party libraries used.

1.3 DOCUMENTATION IN THIS RELEASE

This release contains the following documentation.

 NVIDIA DeepStream SDK Developer Guide 6.1.1 Release
 NVIDIA DeepStream SDK API Reference
 NVIDIA DeepStream Python API Reference

1.4 DIFFERENCES WITH DEEPSTREAM 6.1

gstreamer1.0-libav, libav and audioparsers packages are removed in DeepStream
dockers. You may install these packages based on your requirement. While running
DeepStream applications inside dockers, you may see the following warnings:
WARNING from src_elem: No decoder available for type 'audio/mpeg,
mpegversion=(int)4, framed=(boolean)true, stream-format=(string)raw,
level=(string)2, base-profile=(string)lc, profile=(string)lc,
codec_data=(buffer)119056e500, rate=(int)48000, channels=(int)2'.

Debug info: gsturidecodebin.c(920): unknown_type_cb ():

To avoid such warnings, install gstreamer1.0-libav and gstreamer1.0-plugins-
good inside docker.

Specifically for deepstream-nmos , deepstream-avsync-app and python based deepstream-
imagedata-multistream app you would need to install gstreamer1.0-libav and
gstreamer1.0-plugins-good.

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 8

2.0 LIMITATIONS

This section provides details about issues discovered during development and QA but not
resolved in this release.

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The
maximum number of instances can be increased by doing changes in open-source code.

 detected-min-w and detected-min-h must be set to values larger than 32 in the
primary inference configuration file (config_infer_primary.txt) for gst-
dsexample on Jetson.

 The Kafka protocol adapter sometimes does not automatically reconnect when the
Kafka Broker to which it is connected goes down and comes back up. This requires the
application to restart.

 If the nvds log file ds.log has been deleted, to restart logging you must delete the file
/run/rsyslogd.pid within the container before reenabling logging by running the
setup_nvds_logger.sh script. This is described in the “nvds_logger: Logging
Framework” sub-section in the “Gst-nvmsgbroker” section in the NVIDIA DeepStream
Developer Guide 6.1.1 Release.

 Running a DeepStream application over SSH (via putty) with X11 forwarding does not
work.

 DeepStream currently expects model network width to be a multiple of 4 and network
height to be a multiple of 2.

 Triton Inference Server implementation in DeepStream currently supports a single
GPU. The models need to be configured to use a single GPU.

 For some models output in DeepStream is not exactly same as observed in TAO
Toolkit. This is due to input scaling algorithm differences.

 Dynamic resolution change support is Alpha quality.
 On the fly Model update only supports same type of Model with same Network

parameters.

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 9

 DLA numbers on Jetson NX and Jetson AGX are lower compared to DeepStream-5.1
release. This is because, a few layers now run-on DLA instead of GPU and are little
slow on the DLA. This is done to free up the GPU.

 DeepStream cannot be installed on the current 16 GB Xavier NX production modules
since Jetpack software takes the entire 16 GB emmc memory space. We recommend
using Xavier NX developer kits with 32 GB SD card.

 Rivermax SDK is not part of DeepStream. So, the following warning is observed (gst-
plugin-scanner:33257):

GStreamer-WARNING **: 11:38:46.882: Failed to load plugin
'/usr/lib/x86_64-linux-gnu/gstreamer-
1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0: cannot open
shared object file: No such file or directory

You can ignore this warning safely.

 Sample graphs containing NvDsMultiSrcInput component result in segmentation
fault when an error occurs during graph/pipeline initialization.

 When using Composer WebSocket streaming, sometimes error like "Error while
sending buffer: invalid state" is seen, or the window becomes unresponsive.
Refreshing the browser page might fix it.

 Composer WebRTC Streaming is supported only on RTX GPUs.
 Int8 mode is not supported on NVIDIA® Jetson AGX Orin™ for DLA in this release.
 On jetson, when the screen is idle, fps is lowered for DeepStream applications. this

behavior is by design to save power. However, if user does not want screen idle then
refer to the FAQ for WAR.

 RDMA functionality only supported on x86 and that too in x86 devel docker for now.
 You cannot build the DeepStream out of the box on jetson dockers except its Triton

variant.
 Optical flow plugin not supported on NVIDIA® Jetson AGX Orin™.
 There can be performance drop from TensorRT to Triton for some models (5 to 15%).
 To generate the YOLOV3, YOLOV4 and YOLOV4-tiny model engines, the precision of

some layers should be specified as FP32 for TensorRT 8.4.1.5 limitations. The solution is
updated in https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

 While running two instances of nveglglessink component on Jetson you would see
error like ”NvVicCompose Failed”. In such case user can use nv3dsink component
instead nveglglessink.

 On NVIDIA® Jetson AGX Orin™ rarely “SyncPoint wait for Profiling " error is
observed.

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 10

3.0 NOTES

 Optical flow is supported only on dGPUs having Turing architecture (onwards) and
on NVIDIA® Jetson AGX Xavier™, and NVIDIA® Jetson Xavier™ NX.

 NVIDIA® DeepStream SDK 6.1.1 supports TAO 3.0 models
(https://developer.nvidia.com/tao-toolkit). For more details, see
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps.

 Jetson AGX Orin would be useful compared to Jetson AGX Xavier for the cases
where DeepStream performance on Jetson AGX Xavier is GPU bound.

Note: OpenCV is deprecated by default. But you can enable OpenCV in plugins such
as nvinfer (nvdsinfer) and dsexample (gst-dsexample) by setting
WITH_OPENCV=1 in the Makefile of these components. Refer to the
component README for more instructions.

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER
CONTAINER

Applications built with DeepStream can be deployed using a Docker container, available
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account and look
for DeepStream containers to get started.

After you sign into your NGC account, navigate to Dashboard → Setup → Get
API key to get your nvcr.io authentication details.

As an example, you can use the DeepStream 6.1.1. docker containers on NGC and run
the deepstream-test4-app sample application as an Azure edge runtime module on
your edge device.

The following procedure deploys deepstream-test4-app:

 Using a sample video stream (sample_720p.h264)

https://developer.nvidia.com/tao-toolkit
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://ngc.nvidia.com/

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 11

 Sending messages with minimal schema
 Running with display disabled
 Using message topic mytopic (message topic may not be empty)

Set up and install Azure IoT Edge on your system with the instructions provided in the
Azure module client README file in the deepstream-6.1.1 package:

<deepstream-
6.1.1_package>/sources/libs/azure_protocol_adaptor/module_client/README

Note: For the Jetson platform, omit installation of the Moby packages. Moby is
currently incompatible with NVIDIA Container Runtime.

See the Azure documentation for information about prerequisites for creating an Azure
edge device on the Azure portal:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites

To deploy deepstream-test4-app as an Azure IoT edge runtime module

1. On the Azure portal, click the IoT edge device you have created and click Set
Modules.

2. Enter these settings:

Container Registry Settings:
 Name: NGC
 Address: nvcr.io
 User name: $oauthtoken
 Password: use the password or API key from your NGC account

Deployment modules:
 Add a new module with the name ds.

Image URI:

● For x86 dockers:

docker pull nvcr.io/nvidia/deepstream:6.1.1-devel

docker pull nvcr.io/nvidia/deepstream:6.1.1-samples

docker pull nvcr.io/nvidia/deepstream:6.1.1-iot

docker pull nvcr.io/nvidia/deepstream:6.1.1-base

docker pull nvcr.io/nvidia/deepstream:6.1.1-triton

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 12

● For Jetson dockers:

docker pull nvcr.io/nvidia/deepstream-l4t:6.1.1-samples
docker pull nvcr.io/nvidia/deepstream-l4t:6.1.1-iot

docker pull nvcr.io/nvidia/deepstream-l4t:6.1.1-samples

docker pull nvcr.io/nvidia/deepstream-l4t:6.1.1-triton

Container Create options:

● For Jetson:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "
/opt/nvidia/deepstream/deepstream-
6.1/sources/apps/sample_apps/deepstream-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream-6.1/bin/deepstream-test4-
app",
 "-i", "/opt/nvidia/deepstream/deepstream-6.1/
samples/streams/sample_720p.h264",
 "-p",
"/opt/nvidia/deepstream/deepstream-
6.1/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]
}

● For X86:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "/opt/nvidia/deepstream/deepstream-
6.1/sources/apps/sample_apps/deepstream-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream-6.1/bin/deepstream-test4-
app",
 "-i", "/opt/nvidia/deepstream/deepstream-
6.1/samples/streams/sample_720p.h264",
 "-p",
 "/opt/nvidia/deepstream/deepstream-
6.1/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 13

 "--topic",
 "mytopic"
]}

3. Specify route options for the module:

● Option 1: Use a default route where every message from every module is sent
upstream.

 {
 "routes": {
 "route": "FROM /messages/* INTO $upstream"
 }
 }

● Option 2: Specific routes where messages sent upstream can be filtered based on
topic name. For example, in the sample test programs, topic name mytopic is
used for the module name ds:

 {
 "routes": {
 "route": "FROM /messages/modules/ds/outputs/mytopic INTO
$upstream"
 }
 }

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER
ENVIRONMENT CANNOT SUPPORT DISPLAY

If the Docker environment cannot support display, the sample applications
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected.

Workaround:

To correct this problem, you must recompile the test applications after replacing
nveglglessink with fakesink (on Jetson remove nvegltransform component). With
deepstream-test4, you also have the option to specify fakesink by adding the --
no-display command line switch.

3.3 INSTALLING DEEPSTREAM ON JETSON

1. Download the NVIDIA SDK Manager to install JetPack 5.0.2 GA.
2. Select all the JetPack 5.0.2 components except DeepStreamSDK from the

“Additional SDKs” section.

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 14

Refer to the “Quick Start Guide” section in NVIDIA DeepStream Developer Guide 6.1.1
Release to update additional BSP library. Continue with the DeepStream installation
instructions after the BSP update.

Note: NVIDIA Container Runtime package shall be installed using JetPack 5.0.2 GA
and is a pre-requisite for all DeepStream L4T docker containers.

3.4 TRITON INFERENCE SERVER IN DEEPSTREAM

Triton inference server (version 22.07) on dGPU is supported only via docker
deepstream:6.1.1-triton for x86. On Jetson we support that with or without
docker.

Refer to the NVIDIA DeepStream Development Guide 6.1.1 Release for more details about
Triton inference server.

Triton inference server Supports following frameworks:

Framework Tesla Jetson Notes / Limitations
TensorRT Yes Yes Supports TensorRT plan or engine file

(.plan)

TensorFlow Yes Yes Supports TensorRT optimization

Supported model formats: GraphDef or
SavedModel

Other TF formats such as checkpoint
variables or estimators not directly
supported

Supports both Tensorflow 1.x and
Tensorflow 2.x. Triton defaults to use
Tensorflow 1.x. If users need to run
Tensorlfow 2.x models, need to update
plugin config with:

infer_config{ backend {
trt_is { model_repo{
 backend_configs {
 backend:
"tensorflow"
 setting:
"version"
 value: "2"
} } } }

ONNX Yes Yes Supports TensorRT optimization

PyTorch Yes No PyTorch model must be traced with an
example input and saved as a
TorchScript Module (.pt)

DeepStream SDK 6.1.1 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 15

For more information refer to the following links:

 Triton inference server model repository:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/model_repository.html

Also contains more information on the supported frameworks.

 TensorRT optimization in Triton inference server for ONNX and TensorFlow:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/optimization.html#framework-specific-optimization

 TensorFlow with TensorRT:
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

 TensorFlow saved model:
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

3.5 DEPRECATION PLAN IN THE UPCOMING RELEASES

 Gst-nveglglessink plugin will be deprecated from next release.
 HW mode for Gst-nvdsosd is deprecated and will not be supported from next

release.

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

www.nvidia.com

Notice
THE INFORMATION IN THIS DOCUMENT AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS DOCUMENT IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this document shall
be limited in accordance with the NVIDIA terms and conditions of sale for the product. THE NVIDIA PRODUCT
DESCRIBED IN THIS DOCUMENT IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED
FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY
SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE
SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN
CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA
EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL
NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES
ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this document will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this document. NVIDIA does not accept any liability related to any default, damage,
costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner
that is contrary to this document, or (ii) customer product designs.

Other than the right for customer to use the information in this document with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this document. Reproduction of information in
this document is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, TensorRT, Jetson Nano, Jetson AGX Xavier, Jetson Xavier NX, Jetson AGX Orin, NVIDIA
Ampere, and NVIDIA Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites
States and other countries. Other company and product names may be trademarks of the respective companies
with which they are associated.

Copyright © 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

	1.0 About this Release
	1.1 What’s New
	1.1.1 DS 6.1.1
	1.1.2 DS 6.1
	1.1.3 Graph Composer 2.0.1

	1.2 Contents of this Release
	1.3 Documentation in this Release
	1.4 DIFFERENCES WITH DEEPSTREAM 6.1

	2.0 Limitations
	3.0 Notes
	3.1 Applications May Be Deployed in a Docker Container
	To deploy deepstream-test4-app as an Azure IoT edge runtime module

	3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display
	3.3 Installing DeepStream on Jetson
	3.4 Triton Inference Server In Deepstream
	3.5 Deprecation Plan in the Upcoming Releases

