nvrtc
The User guide for the NVRTC library.
1. Introduction
NVRTC is a runtime compilation library for CUDA C++. It accepts CUDA C++ source code in character string form and creates handles that can be used to obtain the PTX. The PTX string generated by NVRTC can be loaded by cuModuleLoadData and cuModuleLoadDataEx, and linked with other modules by using the nvJitLink library or using cuLinkAddData of the CUDA Driver API. This facility can often provide optimizations and performance not possible in a purely offline static compilation.
In the absence of NVRTC (or any runtime compilation support in CUDA), users needed to spawn a separate process to execute nvcc at runtime if they wished to implement runtime compilation in their applications or libraries, and, unfortunately, this approach has the following drawbacks:
The compilation overhead tends to be higher than necessary.
End users are required to install nvcc and related tools which make it complicated to distribute applications that use runtime compilation.
NVRTC addresses these issues by providing a library interface that eliminates overhead associated with spawning separate processes, disk I/O,and so on, while keeping application deployment simple.
2. Getting Started
2.1. System Requirements
NVRTC is supported on the following platforms: Linux x86_64, Linux ppc64le, Linux aarch64, Windows x86_64.
Note: NVRTC does not depend on any other libraries or headers from the CUDA toolkit, and can be run on a system without a GPU.
2.2. Installation
NVRTC is part of the CUDA Toolkit release and the components are organized as follows in the CUDA toolkit installation directory:
-
On Windows:
include\nvrtc.h
bin\nvrtc64_Major Release VersionMinor Release Version_0.dll
bin\nvrtc-builtins64_Major Release VersionMinor Release Version.dll
lib\x64\nvrtc.lib
lib\x64\nvrtc_static.lib
lib\x64\nvrtc-builtins_static.lib
doc\pdf\NVRTC_User_Guide.pdf
-
On Linux:
include/nvrtc.h
lib64/libnvrtc.so
lib64/libnvrtc.so.Major Release Version.Minor Release Version
lib64/libnvrtc.so.Major Release Version.Minor Release Version.<build version>
lib64/libnvrtc-builtins.so
lib64/libnvrtc-builtins.so.Major Release Version.Minor Release Version
lib64/libnvrtc-builtins.so.Major Release Version.Minor Release Version.<build version>
lib64/libnvrtc_static.a
lib64/libnvrtc-builtins_static.a
doc/pdf/NVRTC_User_Guide.pdf
3. User Interface
This chapter presents the API of NVRTC. Basic usage of the API is explained in Basic Usage.
3.1. Error Handling
NVRTC defines the following enumeration type and function for API call error handling.
Enumerations
- nvrtcResult
-
The enumerated type nvrtcResult defines API call result codes.
Functions
- const char * nvrtcGetErrorString(nvrtcResult result)
-
nvrtcGetErrorString is a helper function that returns a string describing the given nvrtcResult code, e.g., NVRTC_SUCCESS to
"NVRTC_SUCCESS"
.
3.1.1. Enumerations
-
enum nvrtcResult
-
The enumerated type nvrtcResult defines API call result codes.
NVRTC API functions return nvrtcResult to indicate the call result.
Values:
-
enumerator NVRTC_SUCCESS
-
enumerator NVRTC_ERROR_OUT_OF_MEMORY
-
enumerator NVRTC_ERROR_PROGRAM_CREATION_FAILURE
-
enumerator NVRTC_ERROR_INVALID_INPUT
-
enumerator NVRTC_ERROR_INVALID_PROGRAM
-
enumerator NVRTC_ERROR_INVALID_OPTION
-
enumerator NVRTC_ERROR_COMPILATION
-
enumerator NVRTC_ERROR_BUILTIN_OPERATION_FAILURE
-
enumerator NVRTC_ERROR_NO_NAME_EXPRESSIONS_AFTER_COMPILATION
-
enumerator NVRTC_ERROR_NO_LOWERED_NAMES_BEFORE_COMPILATION
-
enumerator NVRTC_ERROR_NAME_EXPRESSION_NOT_VALID
-
enumerator NVRTC_ERROR_INTERNAL_ERROR
-
enumerator NVRTC_ERROR_TIME_FILE_WRITE_FAILED
-
enumerator NVRTC_SUCCESS
3.1.2. Functions
-
const char *nvrtcGetErrorString(nvrtcResult result)
-
nvrtcGetErrorString is a helper function that returns a string describing the given nvrtcResult code, e.g., NVRTC_SUCCESS to
"NVRTC_SUCCESS"
.For unrecognized enumeration values, it returns
"NVRTC_ERROR unknown"
.- Parameters
-
result – [in] CUDA Runtime Compilation API result code.
- Returns
-
Message string for the given nvrtcResult code.
3.2. General Information Query
NVRTC defines the following function for general information query.
Functions
- nvrtcResult nvrtcGetNumSupportedArchs(int *numArchs)
-
nvrtcGetNumSupportedArchs sets the output parameter
numArchs
with the number of architectures supported by NVRTC. - nvrtcResult nvrtcGetSupportedArchs(int *supportedArchs)
-
nvrtcGetSupportedArchs populates the array passed via the output parameter
supportedArchs
with the architectures supported by NVRTC. - nvrtcResult nvrtcVersion(int *major, int *minor)
-
nvrtcVersion sets the output parameters
major
andminor
with the CUDA Runtime Compilation version number.
3.2.1. Functions
-
nvrtcResult nvrtcGetNumSupportedArchs(int *numArchs)
-
nvrtcGetNumSupportedArchs sets the output parameter
numArchs
with the number of architectures supported by NVRTC.This can then be used to pass an array to nvrtcGetSupportedArchs to get the supported architectures.
- Parameters
-
numArchs – [out] number of supported architectures.
- Returns
-
nvrtcResult nvrtcGetSupportedArchs(int *supportedArchs)
-
nvrtcGetSupportedArchs populates the array passed via the output parameter
supportedArchs
with the architectures supported by NVRTC.The array is sorted in the ascending order. The size of the array to be passed can be determined using nvrtcGetNumSupportedArchs.
- Parameters
-
supportedArchs – [out] sorted array of supported architectures.
- Returns
-
nvrtcResult nvrtcVersion(int *major, int *minor)
-
nvrtcVersion sets the output parameters
major
andminor
with the CUDA Runtime Compilation version number.- Parameters
-
major – [out] CUDA Runtime Compilation major version number.
minor – [out] CUDA Runtime Compilation minor version number.
- Returns
3.3. Compilation
NVRTC defines the following type and functions for actual compilation.
Functions
- nvrtcResult nvrtcAddNameExpression(nvrtcProgram prog, const char *const name_expression)
-
nvrtcAddNameExpression notes the given name expression denoting the address of a global function or device /__constant__ variable.
- nvrtcResult nvrtcCompileProgram(nvrtcProgram prog, int numOptions, const char *const *options)
-
nvrtcCompileProgram compiles the given program.
- nvrtcResult nvrtcCreateProgram(nvrtcProgram *prog, const char *src, const char *name, int numHeaders, const char *const *headers, const char *const *includeNames)
-
nvrtcCreateProgram creates an instance of nvrtcProgram with the given input parameters, and sets the output parameter
prog
with it. - nvrtcResult nvrtcDestroyProgram(nvrtcProgram *prog)
-
nvrtcDestroyProgram destroys the given program.
- nvrtcResult nvrtcGetCUBIN(nvrtcProgram prog, char *cubin)
-
nvrtcGetCUBIN stores the cubin generated by the previous compilation of
prog
in the memory pointed bycubin
. - nvrtcResult nvrtcGetCUBINSize(nvrtcProgram prog, size_t *cubinSizeRet)
-
nvrtcGetCUBINSize sets the value of
cubinSizeRet
with the size of the cubin generated by the previous compilation ofprog
. - nvrtcResult nvrtcGetLTOIR(nvrtcProgram prog, char *LTOIR)
-
nvrtcGetLTOIR stores the LTO IR generated by the previous compilation of
prog
in the memory pointed byLTOIR
. - nvrtcResult nvrtcGetLTOIRSize(nvrtcProgram prog, size_t *LTOIRSizeRet)
-
nvrtcGetLTOIRSize sets the value of
LTOIRSizeRet
with the size of the LTO IR generated by the previous compilation ofprog
. - nvrtcResult nvrtcGetLoweredName(nvrtcProgram prog, const char *const name_expression, const char **lowered_name)
-
nvrtcGetLoweredName extracts the lowered (mangled) name for a global function or device /__constant__ variable, and updates *lowered_name to point to it.
- nvrtcResult nvrtcGetNVVM(nvrtcProgram prog, char *nvvm)
-
DEPRECATION NOTICE: This function will be removed in a future release.
- nvrtcResult nvrtcGetNVVMSize(nvrtcProgram prog, size_t *nvvmSizeRet)
-
DEPRECATION NOTICE: This function will be removed in a future release.
- nvrtcResult nvrtcGetOptiXIR(nvrtcProgram prog, char *optixir)
-
nvrtcGetOptiXIR stores the OptiX IR generated by the previous compilation of
prog
in the memory pointed byoptixir
. - nvrtcResult nvrtcGetOptiXIRSize(nvrtcProgram prog, size_t *optixirSizeRet)
-
nvrtcGetOptiXIRSize sets the value of
optixirSizeRet
with the size of the OptiX IR generated by the previous compilation ofprog
. - nvrtcResult nvrtcGetPTX(nvrtcProgram prog, char *ptx)
-
nvrtcGetPTX stores the PTX generated by the previous compilation of
prog
in the memory pointed byptx
. - nvrtcResult nvrtcGetPTXSize(nvrtcProgram prog, size_t *ptxSizeRet)
-
nvrtcGetPTXSize sets the value of
ptxSizeRet
with the size of the PTX generated by the previous compilation ofprog
(including the trailingNULL
). - nvrtcResult nvrtcGetProgramLog(nvrtcProgram prog, char *log)
-
nvrtcGetProgramLog stores the log generated by the previous compilation of
prog
in the memory pointed bylog
. - nvrtcResult nvrtcGetProgramLogSize(nvrtcProgram prog, size_t *logSizeRet)
-
nvrtcGetProgramLogSize sets
logSizeRet
with the size of the log generated by the previous compilation ofprog
(including the trailingNULL
).
Typedefs
- nvrtcProgram
-
nvrtcProgram is the unit of compilation, and an opaque handle for a program.
3.3.1. Functions
-
nvrtcResult nvrtcAddNameExpression(nvrtcProgram prog, const char *const name_expression)
-
nvrtcAddNameExpression notes the given name expression denoting the address of a global function or device/__constant__ variable.
The identical name expression string must be provided on a subsequent call to nvrtcGetLoweredName to extract the lowered name.
See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
name_expression – [in] constant expression denoting the address of a global function or device/__constant__ variable.
- Returns
-
nvrtcResult nvrtcCompileProgram(nvrtcProgram prog, int numOptions, const char *const *options)
-
nvrtcCompileProgram compiles the given program.
It supports compile options listed in Supported Compile Options.
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
numOptions – [in] Number of compiler options passed.
options – [in] Compiler options in the form of C string array.
options
can beNULL
whennumOptions
is 0.
- Returns
-
nvrtcResult nvrtcCreateProgram(nvrtcProgram *prog, const char *src, const char *name, int numHeaders, const char *const *headers, const char *const *includeNames)
-
nvrtcCreateProgram creates an instance of nvrtcProgram with the given input parameters, and sets the output parameter
prog
with it.See also
- Parameters
-
prog – [out] CUDA Runtime Compilation program.
src – [in] CUDA program source.
name – [in] CUDA program name.
name
can beNULL
;"default_program"
is used whenname
isNULL
or “”.numHeaders – [in] Number of headers used.
numHeaders
must be greater than or equal to 0.headers – [in] Sources of the headers.
headers
can beNULL
whennumHeaders
is 0.includeNames – [in] Name of each header by which they can be included in the CUDA program source.
includeNames
can beNULL
whennumHeaders
is 0. These headers must be included with the exact names specified here.
- Returns
-
nvrtcResult nvrtcDestroyProgram(nvrtcProgram *prog)
-
nvrtcDestroyProgram destroys the given program.
See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
- Returns
-
nvrtcResult nvrtcGetCUBIN(nvrtcProgram prog, char *cubin)
-
nvrtcGetCUBIN stores the cubin generated by the previous compilation of
prog
in the memory pointed bycubin
.No cubin is available if the value specified to
-arch
is a virtual architecture instead of an actual architecture.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
cubin – [out] Compiled and assembled result.
- Returns
-
nvrtcResult nvrtcGetCUBINSize(nvrtcProgram prog, size_t *cubinSizeRet)
-
nvrtcGetCUBINSize sets the value of
cubinSizeRet
with the size of the cubin generated by the previous compilation ofprog
.The value of cubinSizeRet is set to 0 if the value specified to
-arch
is a virtual architecture instead of an actual architecture.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
cubinSizeRet – [out] Size of the generated cubin.
- Returns
-
nvrtcResult nvrtcGetLTOIR(nvrtcProgram prog, char *LTOIR)
-
nvrtcGetLTOIR stores the LTO IR generated by the previous compilation of
prog
in the memory pointed byLTOIR
.No LTO IR is available if the program was compiled without
-dlto
.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
LTOIR – [out] Compiled result.
- Returns
-
nvrtcResult nvrtcGetLTOIRSize(nvrtcProgram prog, size_t *LTOIRSizeRet)
-
nvrtcGetLTOIRSize sets the value of
LTOIRSizeRet
with the size of the LTO IR generated by the previous compilation ofprog
.The value of LTOIRSizeRet is set to 0 if the program was not compiled with
-dlto
.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
LTOIRSizeRet – [out] Size of the generated LTO IR.
- Returns
-
nvrtcResult nvrtcGetLoweredName(nvrtcProgram prog, const char *const name_expression, const char **lowered_name)
-
nvrtcGetLoweredName extracts the lowered (mangled) name for a global function or device/__constant__ variable, and updates *lowered_name to point to it.
The memory containing the name is released when the NVRTC program is destroyed by nvrtcDestroyProgram. The identical name expression must have been previously provided to nvrtcAddNameExpression.
See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
name_expression – [in] constant expression denoting the address of a global function or device/__constant__ variable.
lowered_name – [out] initialized by the function to point to a C string containing the lowered (mangled) name corresponding to the provided name expression.
- Returns
-
nvrtcResult nvrtcGetNVVM(nvrtcProgram prog, char *nvvm)
-
DEPRECATION NOTICE: This function will be removed in a future release.
Please use nvrtcGetLTOIR (and nvrtcGetLTOIRSize) instead.
-
nvrtcResult nvrtcGetNVVMSize(nvrtcProgram prog, size_t *nvvmSizeRet)
-
DEPRECATION NOTICE: This function will be removed in a future release.
Please use nvrtcGetLTOIRSize (and nvrtcGetLTOIR) instead.
-
nvrtcResult nvrtcGetOptiXIR(nvrtcProgram prog, char *optixir)
-
nvrtcGetOptiXIR stores the OptiX IR generated by the previous compilation of
prog
in the memory pointed byoptixir
.No OptiX IR is available if the program was compiled with options incompatible with OptiX IR generation.
See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
Optix – [out] IR Compiled result.
- Returns
-
nvrtcResult nvrtcGetOptiXIRSize(nvrtcProgram prog, size_t *optixirSizeRet)
-
nvrtcGetOptiXIRSize sets the value of
optixirSizeRet
with the size of the OptiX IR generated by the previous compilation ofprog
.The value of nvrtcGetOptiXIRSize is set to 0 if the program was compiled with options incompatible with OptiX IR generation.
See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
optixirSizeRet – [out] Size of the generated LTO IR.
- Returns
-
nvrtcResult nvrtcGetPTX(nvrtcProgram prog, char *ptx)
-
nvrtcGetPTX stores the PTX generated by the previous compilation of
prog
in the memory pointed byptx
.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
ptx – [out] Compiled result.
- Returns
-
nvrtcResult nvrtcGetPTXSize(nvrtcProgram prog, size_t *ptxSizeRet)
-
nvrtcGetPTXSize sets the value of
ptxSizeRet
with the size of the PTX generated by the previous compilation ofprog
(including the trailingNULL
).See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
ptxSizeRet – [out] Size of the generated PTX (including the trailing
NULL
).
- Returns
-
nvrtcResult nvrtcGetProgramLog(nvrtcProgram prog, char *log)
-
nvrtcGetProgramLog stores the log generated by the previous compilation of
prog
in the memory pointed bylog
.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
log – [out] Compilation log.
- Returns
-
nvrtcResult nvrtcGetProgramLogSize(nvrtcProgram prog, size_t *logSizeRet)
-
nvrtcGetProgramLogSize sets
logSizeRet
with the size of the log generated by the previous compilation ofprog
(including the trailingNULL
).Note that compilation log may be generated with warnings and informative messages, even when the compilation of
prog
succeeds.See also
- Parameters
-
prog – [in] CUDA Runtime Compilation program.
logSizeRet – [out] Size of the compilation log (including the trailing
NULL
).
- Returns
3.3.2. Typedefs
-
typedef struct _nvrtcProgram *nvrtcProgram
-
nvrtcProgram is the unit of compilation, and an opaque handle for a program.
To compile a CUDA program string, an instance of nvrtcProgram must be created first with nvrtcCreateProgram, then compiled with nvrtcCompileProgram.
3.4. Supported Compile Options
NVRTC supports the compile options below.
Option names with two preceding dashs (--
) are long option names and option names with one preceding dash (-
) are short option names. Short option names can be used instead of long option names. When a compile option takes an argument, an assignment operator (=
) is used to separate the compile option argument from the compile option name, e.g., "--gpu-architecture=compute_60"
. Alternatively, the compile option name and the argument can be specified in separate strings without an assignment operator, .e.g, "--gpu-architecture"
"compute_60"
. Single-character short option names, such as -D
, -U
, and -I
, do not require an assignment operator, and the compile option name and the argument can be present in the same string with or without spaces between them. For instance, "-D=<def>"
, "-D<def>"
, and "-D <def>"
are all supported.
The valid compiler options are:
-
Compilation targets
-
--gpu-architecture=<arch>
(-arch
)
Specify the name of the class of GPU architectures for which the input must be compiled.
-
Valid
<arch>
s:compute_50
compute_52
compute_53
compute_60
compute_61
compute_62
compute_70
compute_72
compute_75
compute_80
compute_87
compute_89
compute_90
compute_90a
sm_50
sm_52
sm_53
sm_60
sm_61
sm_62
sm_70
sm_72
sm_75
sm_80
sm_87
sm_89
sm_90
sm_90a
Default:
compute_52
-
-
-
Separate compilation / whole-program compilation
-
--device-c
(-dc
)
Generate relocatable code that can be linked with other relocatable device code. It is equivalent to
—relocatable-device-code=true. -
--device-w
(-dw
)
Generate non-relocatable code. It is equivalent to
--relocatable-device-code=false
. -
--relocatable-device-code={true|false}
(-rdc
)
Enable (disable) the generation of relocatable device code.
Default:
false
-
--extensible-whole-program
(-ewp
)
Do extensible whole program compilation of device code.
Default:
false
-
-
Debugging support
-
--device-debug
(-G
)
Generate debug information. If
—dopt is not specified, then turns off all optimizations. -
--generate-line-info
(-lineinfo
)
Generate line-number information.
-
-
Code generation
--dopt
on (-dopt
)--dopt=on
Enable device code optimization. When specified along with ‘-G’, enables limited debug information generation for optimized device code (currently, only line number information). When ‘-G’ is not specified, ‘-dopt=on’ is implicit.--ptxas-options
<options> (-Xptxas
)--ptxas-options=<options>
Specify options directly to ptxas, the PTX optimizing assembler.-
--maxrregcount=<N>
(-maxrregcount
)
Specify the maximum amount of registers that GPU functions can use. Until a function-specific limit, a higher value will generally increase the performance of individual GPU threads that execute this function. However, because thread registers are allocated from a global register pool on each GPU, a higher value of this option will also reduce the maximum thread block size, thereby reducing the amount of thread parallelism. Hence, a good maxrregcount value is the result of a trade-off. If this option is not specified, then no maximum is assumed. Value less than the minimum registers required by ABI will be bumped up by the compiler to ABI minimum limit.
-
--ftz={true|false}
(-ftz
)
When performing single-precision floating-point operations, flush denormal values to zero or preserve denormal values.
--use_fast_math
implies--ftz=true
.Default:
false
-
--prec-sqrt={true|false}
(-prec-sqrt
)
For single-precision floating-point square root, use IEEE round-to-nearest mode or use a faster approximation.
--use_fast_math
implies--prec-sqrt=false
.Default:
true
-
--prec-div={true|false}
(-prec-div
)
For single-precision floating-point division and reciprocals, use IEEE round-to-nearest mode or use a faster approximation.
--use_fast_math
implies--prec-div=false
.Default:
true
-
--fmad={true|false}
(-fmad
)
Enables (disables) the contraction of floating-point multiplies and adds/subtracts into floating-point multiply-add operations (FMAD, FFMA, or DFMA).
--use_fast_math
implies--fmad=true
.Default:
true
-
--use_fast_math
(-use_fast_math
)
Make use of fast math operations.
--use_fast_math
implies--ftz=true
--prec-div=false
--prec-sqrt=false
--fmad=true
. -
--extra-device-vectorization
(-extra-device-vectorization
)
Enables more aggressive device code vectorization in the NVVM optimizer.
-
--modify-stack-limit={true|false}
(-modify-stack-limit
)
On Linux, during compilation, use
setrlimit()
to increase stack size to maximum allowed. The limit is reset to the previous value at the end of compilation. Note:setrlimit()
changes the value for the entire process.Default:
true
-
--dlink-time-opt
(-dlto
)
Generate intermediate code for later link-time optimization. It implies
-rdc=true
. Note: when this option is used the nvrtcGetLTOIR API should be used, as PTX or Cubin will not be generated. -
--gen-opt-lto
(-gen-opt-lto
)
Run the optimizer passes before generating the LTO IR.
-
--optix-ir
(-optix-ir
)
Generate OptiX IR. The Optix IR is only intended for consumption by OptiX through appropriate APIs. This feature is not supported with link-time-optimization (
-dlto
)
. Note: when this option is used the nvrtcGetOptiX API should be used, as PTX or Cubin will not be generated.
-
--jump-table-density=
[0-101] (-jtd
)
Specify the case density percentage in switch statements, and use it as a minimal threshold to determine whether jump table(brx.idx instruction) will be used to implement a switch statement. Default value is 101. The percentage ranges from 0 to 101 inclusively.
-
--device-stack-protector={true|false}
(-device-stack-protector
)
Enable (disable) the generation of stack canaries in device code.
Default:
false
-
Preprocessing
-
--define-macro=<def>
(-D
)<def>
can be either<name>
or<name=definitions>
.<name>
Predefine<name>
as a macro with definition1
.<name>=<definition>
The contents of<definition>
are tokenized and preprocessed as if they appeared during translation phase three in a#define
directive. In particular, the definition will be truncated by embedded new line characters.
-
--undefine-macro=<def>
(-U
)
Cancel any previous definition of
<def>
. -
--include-path=<dir>
(-I
)
Add the directory
<dir>
to the list of directories to be searched for headers. These paths are searched after the list of headers given to nvrtcCreateProgram. -
--pre-include=<header>
(-include
)
Preinclude
<header>
during preprocessing. --no-source-include
(-no-source-include
) The preprocessor by default adds the directory of each input sources to the include path. This option disables this feature and only considers the path specified explicitly.
-
-
Language Dialect
-
--std={c++03|c++11|c++14|c++17|c++20}
(-std={c++11|c++14|c++17|c++20}
)
Set language dialect to C++03, C++11, C++14, C++17 or C++20
Default:
c++17
-
--builtin-move-forward={true|false}
(-builtin-move-forward
)
Provide builtin definitions of
std::move
andstd::forward
, when C++11 or later language dialect is selected.Default:
true
-
--builtin-initializer-list={true|false}
(-builtin-initializer-list
)
Provide builtin definitions of
std::initializer_list
class and member functions when C++11 or later language dialect is selected.Default:
true
-
-
Misc.
-
--disable-warnings
(-w
)
Inhibit all warning messages.
-
--restrict
(-restrict
)
Programmer assertion that all kernel pointer parameters are restrict pointers.
-
--device-as-default-execution-space
(-default-device
)
Treat entities with no execution space annotation as
__device__
entities. -
--device-int128
(-device-int128
)
Allow the
__int128
type in device code. Also causes the macro__CUDACC_RTC_INT128__
to be defined. -
--optimization-info=<kind>
(-opt-info
)
Provide optimization reports for the specified kind of optimization. The following kind tags are supported:
inline
: emit a remark when a function is inlined.
-
--display-error-number
(-err-no
)
Display diagnostic number for warning messages. (Default)
-
--no-display-error-number
(-no-err-no
)
Disables the display of a diagnostic number for warning messages.
-
--diag-error=<error-number>
,… (-diag-error
)
Emit error for specified diagnostic message number(s). Message numbers can be separated by comma.
-
--diag-suppress=<error-number>
,… (-diag-suppress
)
Suppress specified diagnostic message number(s). Message numbers can be separated by comma.
-
--diag-warn=<error-number>
,… (-diag-warn
)
Emit warning for specified diagnostic message number(s). Message numbers can be separated by comma.
-
--brief-diagnostics={true|false}
(-brief-diag
)
This option disables or enables showing source line and column info in a diagnostic. The
—brief-diagnostics=true will not show the source line and column info.Default:
false
-
--time=<file-name>
(-time
)
Generate a comma separated value table with the time taken by each compilation phase, and append it at the end of the file given as the option argument. If the file does not exist, the column headings are generated in the first row of the table. If the file name is ‘-’, the timing data is written to the compilation log.
-
--split-compile=
<number of threads> (-split-compile=
<number of threads>)
Perform compiler optimizations in parallel. Split compilation attempts to reduce compile time by enabling the compiler to run certain optimization passes concurrently. This option accepts a numerical value that specifies the maximum number of threads the compiler can use. One can also allow the compiler to use the maximum threads available on the system by setting
—split-compile=0. Setting —split-compile=1 will cause this option to be ignored. -
--fdevice-syntax-only
(-fdevice-syntax-only
)
Ends device compilation after front-end syntax checking. This option does not generate valid device code.
-
--minimal
(-minimal
)
Omit certain language features to reduce compile time for small programs. In particular, the following are omitted:
Texture and surface functions and associated types, e.g.,
cudaTextureObject_t
.CUDA Runtime Functions that are provided by the cudadevrt device code library, typically named with prefix “cuda”, e.g.,
cudaMalloc
.Kernel launch from device code.
Types and macros associated with CUDA Runtime and Driver APIs, provided by cuda/tools/cudart/driver_types.h, typically named with prefix “cuda”, e.g.,
cudaError_t
.
-
--device-stack-protector
(-device-stack-protector
)
Enable stack canaries in device code. Stack canaries make it more difficult to exploit certain types of memory safety bugs involving stack-local variables. The compiler uses heuristics to assess the risk of such a bug in each function. Only those functions which are deemed high-risk make use of a stack canary.
-
3.5. Host Helper
NVRTC defines the following functions for easier interaction with host code.
Functions
- nvrtcResult nvrtcGetTypeName(const std::type_info &tinfo, std::string *result)
-
nvrtcGetTypeName stores the source level name of a type in the given std::string location.
- nvrtcResult nvrtcGetTypeName(std::string *result)
-
nvrtcGetTypeName stores the source level name of the template type argument T in the given std::string location.
3.5.1. Functions
-
inline nvrtcResult nvrtcGetTypeName(const std::type_info &tinfo, std::string *result)
-
nvrtcGetTypeName stores the source level name of a type in the given std::string location.
This function is only provided when the macro NVRTC_GET_TYPE_NAME is defined with a non-zero value. It uses abi::__cxa_demangle or UnDecorateSymbolName function calls to extract the type name, when using gcc/clang or cl.exe compilers, respectively. If the name extraction fails, it will return NVRTC_INTERNAL_ERROR, otherwise *result is initialized with the extracted name.
Windows-specific notes:
nvrtcGetTypeName() is not multi-thread safe because it calls UnDecorateSymbolName(), which is not multi-thread safe.
The returned string may contain Microsoft-specific keywords such as __ptr64 and __cdecl.
- Parameters
-
tinfo – [in] reference to object of type std::type_info for a given type.
result – [in] pointer to std::string in which to store the type name.
- Returns
-
template<typename T>
nvrtcResult nvrtcGetTypeName(std::string *result)
-
nvrtcGetTypeName stores the source level name of the template type argument T in the given std::string location.
This function is only provided when the macro NVRTC_GET_TYPE_NAME is defined with a non-zero value. It uses abi::__cxa_demangle or UnDecorateSymbolName function calls to extract the type name, when using gcc/clang or cl.exe compilers, respectively. If the name extraction fails, it will return NVRTC_INTERNAL_ERROR, otherwise *result is initialized with the extracted name.
Windows-specific notes:
nvrtcGetTypeName() is not multi-thread safe because it calls UnDecorateSymbolName(), which is not multi-thread safe.
The returned string may contain Microsoft-specific keywords such as __ptr64 and __cdecl.
- Parameters
-
result – [in] pointer to std::string in which to store the type name.
- Returns
4. Language
Unlike the offline nvcc compiler, NVRTC is meant for compiling only device CUDA C++ code. It does not accept host code or host compiler extensions in the input code, unless otherwise noted.
4.1. Execution Space
NVRTC uses __host__
as the default execution space, and it generates an error if it encounters any host code in the input. That is, if the input contains entities with explicit __host__
annotations or no execution space annotation, NVRTC will emit an error. __host__ __device__
functions are treated as device functions.
NVRTC provides a compile option, --device-as-default-execution-space
(refer to Supported Compile Options), that enables an alternative compilation mode, in which entities with no execution space annotations are treated as __device__ entities
.
4.2. Separate Compilation
NVRTC itself does not provide any linker. Users can, however, use the nvJitLink library or cuLinkAddData
in the CUDA Driver API to link the generated relocatable PTX code with other relocatable code. To generate relocatable PTX code, the compile option --relocatable-device-code=true
or --device-c
is required.
4.3. Dynamic Parallelism
NVRTC supports dynamic parallelism under the following conditions:
Compilation target must be compute 35 or higher.
Either separate compilation (
--relocatable-device-code=true
or--device-c
) or extensible whole program compilation (--extensible-whole-program
) must be enabled.Generated PTX must be linked against the CUDA device runtime (cudadevrt) library (refer to Separate Compilation).
Example: Dynamic Parallelism provides a simple example.
4.4. Integer Size
Different operating systems define integer type sizes differently. Linux x86_64 implements LP64, and Windows x86_64 implements LLP64.
|
|
|
|
pointers and |
|
---|---|---|---|---|---|
LLP64 |
16 |
32 |
32 |
64 |
64 |
LP64 |
16 |
32 |
64 |
64 |
64 |
NVRTC implements LP64 on Linux and LLP64 on Windows.
NVRTC supports 128-bit integer types through the __int128
type. This can be enabled with the --device-int128
flag. 128-bit integer support is not available on Windows.
4.5. Include Syntax
When nvrtcCompileProgram()
is called, the current working directory is added to the header search path used for locating files included with the quoted syntax (for example, #include "foo.h"
), before the code is compiled.
4.6. Predefined Macros
__CUDACC_RTC__
: useful for distinguishing between runtime and offlinenvcc
compilation in user code.__CUDACC__
: defined with same semantics as with offlinenvcc
compilation.__CUDACC_RDC__
: defined with same semantics as with offlinenvcc
compilation.__CUDACC_EWP__
: defined with same semantics as with offlinenvcc
compilation.__CUDACC_DEBUG__
: defined with same semantics as with offlinenvcc
compilation.__CUDA_ARCH__
: defined with same semantics as with offlinenvcc
compilation.__CUDA_ARCH_LIST__
: defined with same semantics as with offlinenvcc
compilation.__CUDACC_VER_MAJOR__
: defined with the major version number as returned bynvrtcVersion
.__CUDACC_VER_MINOR__
: defined with the minor version number as returned bynvrtcVersion
.__CUDACC_VER_BUILD__
: defined with the build version number.__NVCC_DIAG_PRAGMA_SUPPORT__
: defined with same semantics as with offlinenvcc
compilation.__CUDACC_RTC_INT128__
: defined when-device-int128
flag is specified during compilation, and indicates that__int128
type is supported.NULL
: null pointer constant.va_start
va_end
va_arg
va_copy
: defined when language dialect C++11 or later is selected.__cplusplus
_WIN64
: defined on Windows platforms.__LP64__
: defined on non-Windows platforms wherelong int
and pointer types are 64-bits.__cdecl
: defined to empty on all platforms.__ptr64
: defined to empty on Windows platforms.__CUDACC_RTC_MINIMAL__
: defined when-minimal
flag is specified during compilation (since CUDA 12.4).Macros defined in nv/target header are implicitly provided, e.g.,
NV_IF_TARGET
.
4.7. Predefined Types
clock_t
size_t
ptrdiff_t
va_list
: Note that the definition of this type may be different than the one selected by nvcc when compiling CUDA code.Predefined types such as
dim3
,char4
, etc., that are available in the CUDA Runtime headers when compiling offline withnvcc
are also available, unless otherwise noted.std::initializer_list<T>
: implicitly provided in C++11 and later dialects, unless-builtin-initializer-list=false
is specified.std::move<T>, std::forward<T>
: implicitly provided in C++11 and later dialects, unless-builtin-move-forward=false
is specified.
4.8. Builtin Functions
Builtin functions provided by the CUDA Runtime headers when compiling offline with nvcc
are available, unless otherwise noted.
4.9. Default C++ Dialect
The default C++ dialect is C++17. Other dialects can be selected using the -std
flag.
5. Basic Usage
This section of the document uses a simple example, Single-Precision α⋅X Plus Y (SAXPY), shown in Figure 1 to explain what is involved in runtime compilation with NVRTC. For brevity and readability, error checks on the API return values are not shown. The complete code listing is available in Example: SAXPY.
Figure 1. CUDA source string for SAXPY
const char *saxpy = " \n\
extern \"C\" __global__ \n\
void saxpy(float a, float *x, float *y, float *out, size_t n) \n\
{ \n\
size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\
out[tid] = a * x[tid] + y[tid]; \n\
} \n\
} \n";
First, an instance of nvrtcProgram
needs to be created. Figure 2 shows creation of nvrtcProgram
for SAXPY. As SAXPY does not require any header, 0 is passed as numHeaders
, and NULL as headers
and includeNames
.
Figure 2. nvrtcProgram creation for SAXPY
nvrtcProgram prog; nvrtcCreateProgram(&prog, // prog saxpy, // buffer "saxpy.cu", // name 0, // numHeaders NULL, // headers NULL); // includeNames
If SAXPY had any #include directives, the contents of the files that are
#include’d can be passed as elements of headers, and their names as elements
of includeNames. For example, #include <foo.h>
and #include <bar.h>
would
require 2 as numHeaders
, { "<contents of foo.h>", "<contents of bar.h>" }
as headers, and { "foo.h", "bar.h" }
as includeNames
(<contents of foo.h>
and <contents of bar.h>
must be replaced by the actual contents of foo.h
and bar.h
). Alternatively, the compile option -I
can be used if the header
is guaranteed to exist in the file system at runtime.
Once the instance of nvrtcProgram
for compilation is created, it can be
compiled by nvrtcCompileProgram
as shown in Figure 3. Two compile options
are used in this example, --gpu-architecture=compute_80
and --fmad=false
,
to generate code for the compute_80 architecture and to disable the
contraction of floating-point multiplies and adds/subtracts into
floating-point multiply-add operations. Other combinations of compile
options can be used as needed and Supported Compile Options lists valid
compile options.
Figure 3. Compilation of SAXPY for compute_80 with FMAD enabled
const char *opts[] = {"--gpu-architecture=compute_80", "--fmad=false"}; nvrtcCompileProgram(prog, // prog 2, // numOptions opts); // options
After the compilation completes, users can obtain the program compilation log and the generated PTX as Figure 4 shows. NVRTC does not generate valid PTX when the compilation fails, and it may generate program compilation log even when the compilation succeeds if needed.
An nvrtcProgram
can be compiled by nvrtcCompileProgram
multiple times with
different compile options, and users can only retrieve the PTX and the log
generated by the last compilation.
Figure 4. Obtaining generated PTX and program compilation log
// Obtain compilation log from the program. size_t logSize; nvrtcGetProgramLogSize(prog, &logSize); char *log = new char[logSize]; nvrtcGetProgramLog(prog, log); // Obtain PTX from the program. size_t ptxSize; nvrtcGetPTXSize(prog, &ptxSize); char *ptx = new char[ptxSize]; nvrtcGetPTX(prog, ptx);
When the instance of nvrtcProgram
is no longer needed, it can be destroyed by nvrtcDestroyProgram
as shown in Figure 5.
Figure 5. Destruction of nvrtcProgram
nvrtcDestroyProgram(&prog);
The generated PTX can be further manipulated by the CUDA Driver API for execution or linking. Figure 6 shows an example code sequence for execution of the generated PTX.
Figure 6. Execution of SAXPY using the PTX generated by NVRTC
CUdevice cuDevice; CUcontext context; CUmodule module; CUfunction kernel; cuInit(0); cuDeviceGet(&cuDevice, 0); cuCtxCreate(&context, 0, cuDevice); cuModuleLoadDataEx(&module, ptx, 0, 0, 0); cuModuleGetFunction(&kernel, module, "saxpy"); size_t n = size_t n = NUM_THREADS * NUM_BLOCKS; size_t bufferSize = n * sizeof(float); float a = ...; float *hX = ..., *hY = ..., *hOut = ...; CUdeviceptr dX, dY, dOut; cuMemAlloc(&dX, bufferSize); cuMemAlloc(&dY, bufferSize); cuMemAlloc(&dOut, bufferSize); cuMemcpyHtoD(dX, hX, bufferSize); cuMemcpyHtoD(dY, hY, bufferSize); void *args[] = { &a, &dX, &dY, &dOut, &n }; cuLaunchKernel(kernel, NUM_THREADS, 1, 1, // grid dim NUM_BLOCKS, 1, 1, // block dim 0, NULL, // shared mem and stream args, // arguments 0); cuCtxSynchronize(); cuMemcpyDtoH(hOut, dOut, bufferSize);
6. Accessing Lowered Names
NVRTC will mangle __global__
function names and names of __device__
and __constant__
variables as specified by the IA64 ABI. If the generated
PTX is being loaded using the CUDA Driver API, the kernel function or
__device__
/__constant__
variable must be looked up by name, but this
is hard to do when the name has been mangled. To address this problem,
NVRTC provides API functions that map source level __global__
function
or __device__
/__constant__
variable names to the mangled names present
in the generated PTX.
The two API functions nvrtcAddNameExpression
and nvrtcGetLoweredName
work together to provide this functionality. First, a ‘name expression’
string denoting the address for the __global__
function or
__device__
/__constant__
variable is provided to nvrtcAddNameExpression
.
Then, the program is compiled with nvrtcCompileProgram
. During compilation,
NVRTC will parse the name expression string as a C++ constant expression at
the end of the user program. The constant expression must provide the address
of the __global__
function or __device__
/__constant__
variable. Finally,
the function nvrtcGetLoweredName
is called with the original name expression
and it returns a pointer to the lowered name. The lowered name can be used
to refer to the kernel or variable in the CUDA Driver API.
NVRTC guarantees that any __global__
function or __device__/__constant__
variable referenced in a call to nvrtcAddNameExpression
will be present in
the generated PTX (if the definition is available in the input source code).
6.1. Example
Example: Using Lowered Name`_ lists a complete runnable example. Some relevant snippets:
-
The GPU source code (‘gpu_program’) contains definitions of various
__global__
functions/function templates and__device__
/__constant__
variables:const char *gpu_program = " \n\ __device__ int V1; // set from host code \n\ static __global__ void f1(int *result) { *result = V1 + 10; } \n\ namespace N1 { \n\ namespace N2 { \n\ __constant__ int V2; // set from host code \n\ __global__ void f2(int *result) { *result = V2 + 20; } \n\ } \n\ } \n\ template<typename T> \n\ __global__ void f3(int *result) { *result = sizeof(T); } \n\
-
The host source code invokes
nvrtcAddNameExpression
with various name expressions referring to the address of__global__
functions and__device__
/__constant__
variables:kernel_name_vec.push_back("&f1"); .. kernel_name_vec.push_back("N1::N2::f2"); .. kernel_name_vec.push_back("f3<int>"); .. kernel_name_vec.push_back("f3<double>"); // add name expressions to NVRTC. Note this must be done before // the program is compiled. for (size_t i = 0; i < name_vec.size(); ++i) NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, kernel_name_vec[i].c_str())); .. // add expressions for __device__ / __constant__ variables to NVRTC variable_name_vec.push_back("&V1"); .. variable_name_vec.push_back("&N1::N2::V2"); .. for (size_t i = 0; i < variable_name_vec.size(); ++i) NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, variable_name_vec[i].c_str()));
-
The GPU program is then compiled with
nvrtcCompileProgram
. The generated PTX is loaded on the GPU. The mangled names of the__device__
/__constant__
variables and__global__
functions are looked up:// note: this call must be made after NVRTC program has been // compiled and before it has been destroyed. NVRTC_SAFE_CALL(nvrtcGetLoweredName( prog, variable_name_vec[i].c_str(), // name expression &name // lowered name )); .. NVRTC_SAFE_CALL(nvrtcGetLoweredName( prog, kernel_name_vec[i].c_str(), // name expression &name // lowered name ));
-
The mangled name of the
__device__
/__constant__
variable is then used to lookup the variable in the module and update its value using the CUDA Driver API:CUdeviceptr variable_addr; CUDA_SAFE_CALL(cuModuleGetGlobal(&variable_addr, NULL, module, name)); CUDA_SAFE_CALL(cuMemcpyHtoD(variable_addr, &initial_value, sizeof(initial_value)));
-
The mangled name of the kernel is then used to launch it using the CUDA Driver API:
CUfunction kernel; CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, name)); ... CUDA_SAFE_CALL( cuLaunchKernel(kernel, 1, 1, 1, // grid dim 1, 1, 1, // block dim 0, NULL, // shared mem and stream args, 0));
6.2. Notes
Sequence of calls: All name expressions must be added using
nvrtcAddNameExpression
before the NVRTC program is compiled withnvrtcCompileProgram
. This is required because the name expressions are parsed at the end of the user program, and may trigger template instantiations. The lowered names must be looked up by callingnvrtcGetLoweredName
only after the NVRTC program has been compiled, and before it has been destroyed. The pointer returned bynvrtcGetLoweredName
points to memory owned by NVRTC, and this memory is freed when the NVRTC program has been destroyed (nvrtcDestroyProgram
). Thus the correct sequence of calls is:nvrtcAddNameExpression
,nvrtcCompileProgram
,nvrtcGetLoweredName
,nvrtcDestroyProgram
.Identical Name Expressions: The name expression string passed to
nvrtcAddNameExpression
andnvrtcGetLoweredName
must have identical characters. For example, “foo” and “foo ” are not identical strings, even though semantically they refer to the same entity (foo), because the second string has a extra whitespace character.Constant Expressions: The characters in the name expression string are parsed as a C++ constant expression at the end of the user program. Any errors during parsing will cause compilation failure and compiler diagnostics will be generated in the compilation log. The constant expression must refer to the address of a
__global__
function or__device__/__constant__
variable.-
Address of overloaded function: If the NVRTC source code has multiple overloaded
__global__
functions, then the name expression must use a cast operation to disambiguate. However, casts are not allowed in constant expression for C++ dialects before C++11. If using such name expressions, please compile the code in C++11 or later dialect using the-std
command line flag. Example: Consider that the GPU code string contains:__global__ void foo(int) { } __global__ void foo(char) { }
The name expression
(void(*)(int))foo
correctly disambiguatesfoo(int)
, but the program must be compiled in C++11 or later dialect (such as-std=c++11
) because casts are not allowed in pre-C++11 constant expressions.
7. Interfacing With Template Host Code
In some scenarios, it is useful to instantiate __global__
function templates in device
code based on template arguments in host code. The NVRTC helper function nvrtcGetTypeName
can be used to extract the source level name of a type in host code, and this string can be
used to instantiate a __global__
function template and get the mangled name of the
instantiation using the nvrtcAddNameExpression
and nvrtcGetLoweredName
functions.
nvrtcGetTypeName
is defined inline in the NVRTC header file, and is available when the
macro NVRTC_GET_TYPE_NAME
is defined with a non-zero value. It uses the abi::__cxa_demangle
and UnDecorateSymbolName
host code functions when using gcc/clang and cl.exe compilers,
respectively. Users may need to specify additional header paths and libraries to find the
host functions used (abi::__cxa_demangle / UnDecorateSymbolName
). Refer to the build instructions
for the example below for reference (nvrtcGetTypeName Build Instructions).
7.1. Template Host Code Example
Example: Using nvrtcGetTypeName lists a complete runnable example. Some relevant snippets:
-
The GPU source code (
gpu_program
) contains definitions of a__global__
function template:const char *gpu_program = " \n\ namespace N1 { struct S1_t { int i; double d; }; } \n\ template<typename T> \n\ __global__ void f3(int *result) { *result = sizeof(T); } \n\ \n";
-
The host code function
getKernelNameForType
creates the name expression for a__global__
function template instantiation based on the host template type T. The name of the type T is extracted usingnvrtcGetTypeName
:template <typename T> std::string getKernelNameForType(void) { // Look up the source level name string for the type "T" using // nvrtcGetTypeName() and use it to create the kernel name std::string type_name; NVRTC_SAFE_CALL(nvrtcGetTypeName<T>(&type_name)); return std::string("f3<") + type_name + ">"; }
-
The name expressions are presented to NVRTC using the
nvrtcAddNameExpression
function:name_vec.push_back(getKernelNameForType<int>()); .. name_vec.push_back(getKernelNameForType<double>()); .. name_vec.push_back(getKernelNameForType<N1::S1_t>()); .. for (size_t i = 0; i < name_vec.size(); ++i) NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, name_vec[i].c_str()));
-
The GPU program is then compiled with
nvrtcCompileProgram
. The generated PTX is loaded on the GPU. The mangled names of the__global__
function template instantiations are looked up:// note: this call must be made after NVRTC program has been // compiled and before it has been destroyed. NVRTC_SAFE_CALL(nvrtcGetLoweredName( prog, name_vec[i].c_str(), // name expression &name // lowered name ));
-
The mangled name is then used to launch the kernel using the CUDA Driver API:
CUfunction kernel; CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, name)); ... CUDA_SAFE_CALL( cuLaunchKernel(kernel, 1, 1, 1, // grid dim 1, 1, 1, // block dim 0, NULL, // shared mem and stream args, 0));
8. Versioning Scheme
8.2. NVRTC-builtins Library
The NVRTC-builtins library contains helper code that is part of the NVRTC package. It is only used by the NVRTC library internally. Each NVRTC library is only compatible with the NVRTC-builtins library from the same CUDA toolkit.
9. Miscellaneous Notes
9.1. Thread Safety
Multiple threads can invoke NVRTC API functions concurrently, as long as there is no race
condition. In this context, a race condition is defined to occur if multiple threads
concurrently invoke NVRTC API functions with the same nvrtcProgram argument, where at
least one thread is invoking either nvrtcCompileProgram
or nvrtcAddNameExpression
2.
Since CUDA 12.3, NVRTC allows concurrent invocations of nvrtcCompileProgram
to potentially concurrently also invoke the embedded NVVM optimizer/codegen phase.
Setting the environment variable NVRTC_DISABLE_CONCURRENT_NVVM
disables this behavior,
i.e., invocations of the embedded NVVM optimizer/codegen phase will be serialized.
9.2. Stack Size
On Linux, NVRTC will increase the stack size to the maximum allowed using the setrlimit()
function during compilation. This reduces the chance that the compiler will run out of stack when processing complex input sources. The stack size is reset to the previous value when compilation is completed.
Because setrlimit()
changes the stack size for the entire process, it will also affect
other application threads that may be executing concurrently. The command line flag
-modify-stack-limit=false
will prevent NVRTC from modifying the stack limit.
9.3. NVRTC Static Library
The NVRTC static library references functions defined in the NVRTC-builtins static library and the PTX compiler static library. Please see Build Instructions for an example.
10. Example: SAXPY
10.1. Code (saxpy.cpp)
#include <nvrtc.h>
#include <cuda.h>
#include <iostream>
#define NUM_THREADS 128
#define NUM_BLOCKS 32
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
const char *saxpy = " \n\
extern \"C\" __global__ \n\
void saxpy(float a, float *x, float *y, float *out, size_t n) \n\
{ \n\
size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\
out[tid] = a * x[tid] + y[tid]; \n\
} \n\
} \n";
int main()
{
// Create an instance of nvrtcProgram with the SAXPY code string.
nvrtcProgram prog;
NVRTC_SAFE_CALL(
nvrtcCreateProgram(&prog, // prog
saxpy, // buffer
"saxpy.cu", // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// Compile the program with fmad disabled.
// Note: Can specify GPU target architecture explicitly with '-arch' flag.
const char *opts[] = {"--fmad=false"};
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
1, // numOptions
opts); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain PTX from the program.
size_t ptxSize;
NVRTC_SAFE_CALL(nvrtcGetPTXSize(prog, &ptxSize));
char *ptx = new char[ptxSize];
NVRTC_SAFE_CALL(nvrtcGetPTX(prog, ptx));
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
// Load the generated PTX and get a handle to the SAXPY kernel.
CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUfunction kernel;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
CUDA_SAFE_CALL(cuModuleLoadDataEx(&module, ptx, 0, 0, 0));
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, "saxpy"));
// Generate input for execution, and create output buffers.
size_t n = NUM_THREADS * NUM_BLOCKS;
size_t bufferSize = n * sizeof(float);
float a = 5.1f;
float *hX = new float[n], *hY = new float[n], *hOut = new float[n];
for (size_t i = 0; i < n; ++i) {
hX[i] = static_cast<float>(i);
hY[i] = static_cast<float>(i * 2);
}
CUdeviceptr dX, dY, dOut;
CUDA_SAFE_CALL(cuMemAlloc(&dX, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dY, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dOut, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dX, hX, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dY, hY, bufferSize));
// Execute SAXPY.
void *args[] = { &a, &dX, &dY, &dOut, &n };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
NUM_BLOCKS, 1, 1, // grid dim
NUM_THREADS, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve and print output.
CUDA_SAFE_CALL(cuMemcpyDtoH(hOut, dOut, bufferSize));
for (size_t i = 0; i < n; ++i) {
std::cout << a << " * " << hX[i] << " + " << hY[i]
<< " = " << hOut[i] << '\n';
}
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dX));
CUDA_SAFE_CALL(cuMemFree(dY));
CUDA_SAFE_CALL(cuMemFree(dOut));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
delete[] hX;
delete[] hY;
delete[] hOut;
delete[] ptx;
return 0;
}
10.2. Host Type Name Build Instructions
Assuming the environment variable CUDA_PATH
points to the CUDA Toolkit installation directory, build this example as:
-
With NVRTC shared library:
-
Windows:
cl.exe saxpy.cpp /Fesaxpy ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc.lib "%CUDA_PATH%"\lib\x64\cuda.lib
-
Linux:
g++ saxpy.cpp -o saxpy \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc -lcuda \ -Wl,-rpath,$CUDA_PATH/lib64
-
-
With NVRTC static library:
-
Windows:
cl.exe saxpy.cpp /Fesaxpy ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^ "%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^ "%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib user32.lib Ws2_32.lib
-
Linux:
g++ saxpy.cpp -o saxpy \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc_static -lnvrtc-builtins_static -lnvptxcompiler_static -lcuda \ -lpthread
-
11. Example: Using Lowered Name
11.1. Code (lowered-name.cpp)
#include <nvrtc.h>
#include <cuda.h>
#include <iostream>
#include <vector>
#include <string>
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
const char *gpu_program = "
__device__ int V1; // set from host code \n\
static __global__ void f1(int *result) { *result = V1 + 10; } \n\
namespace N1 { \n\
namespace N2 { \n\
__constant__ int V2; // set from host code \n\
__global__ void f2(int *result) { *result = V2 + 20; } \n\
} \n\
} \n\
template<typename T> \n\
__global__ void f3(int *result) { *result = sizeof(T); } \n\
\n";
int main()
{
// Create an instance of nvrtcProgram
nvrtcProgram prog;
NVRTC_SAFE_CALL(nvrtcCreateProgram(&prog, // prog
gpu_program, // buffer
"prog.cu", // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// add all name expressions for kernels
std::vector<std::string> kernel_name_vec;
std::vector<std::string> variable_name_vec;
std::vector<int> variable_initial_value;
std::vector<int> expected_result;
// note the name expressions are parsed as constant expressions
kernel_name_vec.push_back("&f1");
expected_result.push_back(10 + 100);
kernel_name_vec.push_back("N1::N2::f2");
expected_result.push_back(20 + 200);
kernel_name_vec.push_back("f3<int>");
expected_result.push_back(sizeof(int));
kernel_name_vec.push_back("f3<double>");
expected_result.push_back(sizeof(double));
// add kernel name expressions to NVRTC. Note this must be done before
// the program is compiled.
for (size_t i = 0; i < kernel_name_vec.size(); ++i)
NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, kernel_name_vec[i].c_str()));
// add expressions for __device__ / __constant__ variables to NVRTC
variable_name_vec.push_back("&V1");
variable_initial_value.push_back(100);
variable_name_vec.push_back("&N1::N2::V2");
variable_initial_value.push_back(200);
for (size_t i = 0; i < variable_name_vec.size(); ++i)
NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, variable_name_vec[i].c_str()));
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
0, // numOptions
NULL); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain PTX from the program.
size_t ptxSize;
NVRTC_SAFE_CALL(nvrtcGetPTXSize(prog, &ptxSize));
char *ptx = new char[ptxSize];
NVRTC_SAFE_CALL(nvrtcGetPTX(prog, ptx));
// Load the generated PTX
CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
CUDA_SAFE_CALL(cuModuleLoadDataEx(&module, ptx, 0, 0, 0));
CUdeviceptr dResult;
int hResult = 0;
CUDA_SAFE_CALL(cuMemAlloc(&dResult, sizeof(hResult)));
CUDA_SAFE_CALL(cuMemcpyHtoD(dResult, &hResult, sizeof(hResult)));
// for each of the __device__/__constant__ variable address
// expressions provided to NVRTC, extract the lowered name for the
// corresponding variable, and set its value
for (size_t i = 0; i < variable_name_vec.size(); ++i) {
const char *name;
// note: this call must be made after NVRTC program has been
// compiled and before it has been destroyed.
NVRTC_SAFE_CALL(nvrtcGetLoweredName(
prog,
variable_name_vec[i].c_str(), // name expression
&name // lowered name
));
int initial_value = variable_initial_value[i];
// get pointer to variable using lowered name, and set its
// initial value
CUdeviceptr variable_addr;
CUDA_SAFE_CALL(cuModuleGetGlobal(&variable_addr, NULL, module, name));
CUDA_SAFE_CALL(cuMemcpyHtoD(variable_addr, &initial_value, sizeof(initial_value)));
}
// for each of the kernel name expressions previously provided to NVRTC,
// extract the lowered name for corresponding __global__ function,
// and launch it.
for (size_t i = 0; i < kernel_name_vec.size(); ++i) {
const char *name;
// note: this call must be made after NVRTC program has been
// compiled and before it has been destroyed.
NVRTC_SAFE_CALL(nvrtcGetLoweredName(
prog,
kernel_name_vec[i].c_str(), // name expression
&name // lowered name
));
// get pointer to kernel from loaded PTX
CUfunction kernel;
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, name));
// launch the kernel
std::cout << "\nlaunching " << name << " ("
<< kernel_name_vec[i] << ")" << std::endl;
void *args[] = { &dResult };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
1, 1, 1, // grid dim
1, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve the result
CUDA_SAFE_CALL(cuMemcpyDtoH(&hResult, dResult, sizeof(hResult)));
// check against expected value
if (expected_result[i] != hResult) {
std::cout << "\n Error: expected result = " << expected_result[i]
<< " , actual result = " << hResult << std::endl;
exit(1);
}
} // for
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dResult));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
delete[] ptx;
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
return 0;
}
11.2. Lowered Name Build Instructions
Assuming the environment variable CUDA_PATH
points to CUDA Toolkit installation directory, build this example as:
-
With NVRTC shared library:
-
Windows:
cl.exe lowered-name.cpp /Felowered-name ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc.lib "%CUDA_PATH%"\lib\x64\cuda.lib
-
Linux:
g++ lowered-name.cpp -o lowered-name \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc -lcuda \ -Wl,-rpath,$CUDA_PATH/lib64
-
-
With NVRTC static library:
-
Windows:
cl.exe lowered-name.cpp /Felowered-name ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^ "%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^ "%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib user32.lib Ws2_32.lib
-
Linux:
g++ lowered-name.cpp -o lowered-name \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc_static -lnvrtc-builtins_static -lnvptxcompiler_static \ -lcuda -lpthread
-
12. Example: Using nvrtcGetTypeName
12.1. Code (host-type-name.cpp)
#include <nvrtc.h>
#include <cuda.h>
#include <iostream>
#include <vector>
#include <string>
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
const char *gpu_program = " \n\
namespace N1 { struct S1_t { int i; double d; }; } \n\
template<typename T> \n\
__global__ void f3(int *result) { *result = sizeof(T); } \n\
\n";
// note: this structure is also defined in GPU code string. Should ideally
// be in a header file included by both GPU code string and by CPU code.
namespace N1 { struct S1_t { int i; double d; }; };
template <typename T>
std::string getKernelNameForType(void)
{
// Look up the source level name string for the type "T" using
// nvrtcGetTypeName() and use it to create the kernel name
std::string type_name;
NVRTC_SAFE_CALL(nvrtcGetTypeName<T>(&type_name));
return std::string("f3<") + type_name + ">";
}
int main()
{
// Create an instance of nvrtcProgram
nvrtcProgram prog;
NVRTC_SAFE_CALL(
nvrtcCreateProgram(&prog, // prog
gpu_program, // buffer
"gpu_program.cu", // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// add all name expressions for kernels
std::vector<std::string> name_vec;
std::vector<int> expected_result;
// note the name expressions are parsed as constant expressions
name_vec.push_back(getKernelNameForType<int>());
expected_result.push_back(sizeof(int));
name_vec.push_back(getKernelNameForType<double>());
expected_result.push_back(sizeof(double));
name_vec.push_back(getKernelNameForType<N1::S1_t>());
expected_result.push_back(sizeof(N1::S1_t));
// add name expressions to NVRTC. Note this must be done before
// the program is compiled.
for (size_t i = 0; i < name_vec.size(); ++i)
NVRTC_SAFE_CALL(nvrtcAddNameExpression(prog, name_vec[i].c_str()));
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
0, // numOptions
NULL); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain PTX from the program.
size_t ptxSize;
NVRTC_SAFE_CALL(nvrtcGetPTXSize(prog, &ptxSize));
char *ptx = new char[ptxSize];
NVRTC_SAFE_CALL(nvrtcGetPTX(prog, ptx));
// Load the generated PTX
CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
CUDA_SAFE_CALL(cuModuleLoadDataEx(&module, ptx, 0, 0, 0));
CUdeviceptr dResult;
int hResult = 0;
CUDA_SAFE_CALL(cuMemAlloc(&dResult, sizeof(hResult)));
CUDA_SAFE_CALL(cuMemcpyHtoD(dResult, &hResult, sizeof(hResult)));
// for each of the name expressions previously provided to NVRTC,
// extract the lowered name for corresponding __global__ function,
// and launch it.
for (size_t i = 0; i < name_vec.size(); ++i) {
const char *name;
// note: this call must be made after NVRTC program has been
// compiled and before it has been destroyed.
NVRTC_SAFE_CALL(nvrtcGetLoweredName(
prog,
name_vec[i].c_str(), // name expression
&name // lowered name
));
// get pointer to kernel from loaded PTX
CUfunction kernel;
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, name));
// launch the kernel
std::cout << "\nlaunching " << name << " ("
<< name_vec[i] << ")" << std::endl;
void *args[] = { &dResult };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
1, 1, 1, // grid dim
1, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve the result
CUDA_SAFE_CALL(cuMemcpyDtoH(&hResult, dResult, sizeof(hResult)));
// check against expected value
if (expected_result[i] != hResult) {
std::cout << "\n Error: expected result = " << expected_result[i]
<< " , actual result = " << hResult << std::endl;
exit(1);
}
} // for
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dResult));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
delete[] ptx;
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
return 0;
}
12.2. nvrtcGetTypeName Build Instructions
Assuming the environment variable CUDA_PATH
points to CUDA Toolkit installation
directory, build this example as:
-
With NVRTC shared library:
-
Windows:
cl.exe -DNVRTC_GET_TYPE_NAME=1 host-type-name.cpp /Fehost-type-name ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc.lib "%CUDA_PATH%"\lib\x64\cuda.lib DbgHelp.lib
-
Linux:
g++ -DNVRTC_GET_TYPE_NAME=1 host-type-name.cpp -o host-type-name \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc -lcuda \ -Wl,-rpath,$CUDA_PATH/lib64
-
-
With NVRTC static library:
-
Windows:
cl.exe -DNVRTC_GET_TYPE_NAME=1 host-type-name.cpp /Fehost-type-name ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^ "%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^ "%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib DbgHelp.lib user32.lib Ws2_32.lib
-
Linux:
g++ -DNVRTC_GET_TYPE_NAME=1 host-type-name.cpp -o host-type-name \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc_static -lnvrtc-builtins_static -lnvptxcompiler_static \ -lcuda -lpthread
-
13. Example: Dynamic Parallelism
Code (dynamic-parallelism.cpp)
#include <nvrtc.h>
#include <cuda.h>
#include <iostream>
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
const char *dynamic_parallelism = " \n\
extern \"C\" __global__ \n\
void child(float *out, size_t n) \n\
{ \n\
size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\
out[tid] = tid; \n\
} \n\
} \n\
\n\
extern \"C\" __global__ \n\
void parent(float *out, size_t n, \n\
size_t numBlocks, size_t numThreads) \n\
{ \n\
child<<<numBlocks, numThreads>>>(out, n); \n\
cudaDeviceSynchronize(); \n\
} \n";
int main(int argc, char *argv[])
{
if (argc < 2) {
std::cout << "Usage: dynamic-parallelism <path to cudadevrt library>\n\n"
<< "<path to cudadevrt library> must include the cudadevrt\n"
<< "library name itself, e.g., Z:\\path\\to\\cudadevrt.lib on \n"
<< "Windows and /path/to/libcudadevrt.a on Linux.\n";
exit(1);
}
size_t numBlocks = 32;
size_t numThreads = 128;
// Create an instance of nvrtcProgram with the code string.
nvrtcProgram prog;
NVRTC_SAFE_CALL(
nvrtcCreateProgram(&prog, // prog
dynamic_parallelism, // buffer
"dynamic_parallelism.cu", // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// Compile the program for compute_35 with rdc enabled.
const char *opts[] = {"--gpu-architecture=compute_35",
"--relocatable-device-code=true"};
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
2, // numOptions
opts); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain PTX from the program.
size_t ptxSize;
NVRTC_SAFE_CALL(nvrtcGetPTXSize(prog, &ptxSize));
char *ptx = new char[ptxSize];
NVRTC_SAFE_CALL(nvrtcGetPTX(prog, ptx));
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
// Load the generated PTX and get a handle to the parent kernel.
CUdevice cuDevice;
CUcontext context;
CUlinkState linkState;
CUmodule module;
CUfunction kernel;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
CUDA_SAFE_CALL(cuLinkCreate(0, 0, 0, &linkState));
CUDA_SAFE_CALL(cuLinkAddFile(linkState, CU_JIT_INPUT_LIBRARY, argv[1],
0, 0, 0));
CUDA_SAFE_CALL(cuLinkAddData(linkState, CU_JIT_INPUT_PTX,
(void *)ptx, ptxSize, "dynamic_parallelism.ptx",
0, 0, 0));
size_t cubinSize;
void *cubin;
CUDA_SAFE_CALL(cuLinkComplete(linkState, &cubin, &cubinSize));
CUDA_SAFE_CALL(cuModuleLoadData(&module, cubin));
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, "parent"));
// Generate input for execution, and create output buffers.
size_t n = numBlocks * numThreads;
size_t bufferSize = n * sizeof(float);
float *hOut = new float[n];
CUdeviceptr dX, dY, dOut;
CUDA_SAFE_CALL(cuMemAlloc(&dOut, bufferSize));
// Execute parent kernel.
void *args[] = { &dOut, &n, &numBlocks, &numThreads };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
1, 1, 1, // grid dim
1, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve and print output.
CUDA_SAFE_CALL(cuMemcpyDtoH(hOut, dOut, bufferSize));
for (size_t i = 0; i < n; ++i) {
std::cout << hOut[i] << '\n';
}
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dOut));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuLinkDestroy(linkState));
CUDA_SAFE_CALL(cuCtxDestroy(context));
delete[] hOut;
delete[] ptx;
return 0;
}
13.1. Dynamic Parallelism Build Instructions
Assuming the environment variable CUDA_PATH
points to CUDA Toolkit installation directory, build this example as:
-
With NVRTC shared library:
-
Windows:
cl.exe dynamic-parallelism.cpp /Fedynamic-parallelism ^ /I "%CUDA_PATH%\include" ^ "%CUDA_PATH%"\lib\x64\nvrtc.lib "%CUDA_PATH%"\lib\x64\cuda.lib
-
Linux:
g++ dynamic-parallelism.cpp -o dynamic-parallelism \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc -lcuda \ -Wl,-rpath,$CUDA_PATH/lib64
-
-
With NVRTC static library:
-
Windows:
cl.exe dynamic-parallelism.cpp /Fedynamic-parallelism ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^ "%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^ "%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib user32.lib Ws2_32.lib
-
Linux:
g++ dynamic-parallelism.cpp -o dynamic-parallelism \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc_static -lnvrtc-builtins_static -lnvptxcompiler_static -lcuda \ -lpthread
-
14. Example: Device LTO (link time optimization)
This section demonstrates device link time optimization (LTO).
There are two units of LTO IR. The first unit is generated offline using nvcc, by specifying the architecture as -arch lto_XX
(refer to Code (offline.cu)).
The generated LTO IR is packaged in a fatbinary.
The second unit is generated online using NVRTC, by specifying the flag -dlto
(refer to Code (online.cpp)).
These two units are then passed to libnvJitLink*
API functions, which link together the LTO IR, run the optimizer on the linked IR and generate a cubin (refer to Code (online.cpp)). The cubin is then loaded on the GPU and executed.
14.1. Code (offline.cu)
__device__ float compute(float a, float x, float y) {
return a * x + y;
}
14.2. Code (online.cpp)
#include <nvrtc.h>
#include <cuda.h>
#include <nvJitLink.h>
#include <iostream>
#define NUM_THREADS 128
#define NUM_BLOCKS 32
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
#define NVJITLINK_SAFE_CALL(h,x) \
do { \
nvJitLinkResult result = x; \
if (result != NVJITLINK_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< result << '\n'; \
size_t lsize; \
result = nvJitLinkGetErrorLogSize(h, &lsize); \
if (result == NVJITLINK_SUCCESS && lsize > 0) { \
char *log = (char*)malloc(lsize); \
result = nvJitLinkGetErrorLog(h, log); \
if (result == NVJITLINK_SUCCESS) { \
std::cerr << "error: " << log << '\n'; \
free(log); \
} \
} \
exit(1); \
} \
} while(0)
const char *lto_saxpy = " \n\
extern __device__ float compute(float a, float x, float y); \n\
\n\
extern \"C\" __global__ \n\
void saxpy(float a, float *x, float *y, float *out, size_t n) \n\
{ \n\
size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\
out[tid] = compute(a, x[tid], y[tid]); \n\
} \n\
} \n";
int main(int argc, char *argv[])
{
size_t numBlocks = 32;
size_t numThreads = 128;
// Create an instance of nvrtcProgram with the code string.
nvrtcProgram prog;
NVRTC_SAFE_CALL(
nvrtcCreateProgram(&prog, // prog
lto_saxpy, // buffer
"lto_saxpy.cu", // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// specify that LTO IR should be generated for LTO operation
const char *opts[] = {"-dlto",
"--relocatable-device-code=true"};
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
2, // numOptions
opts); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain generated LTO IR from the program.
size_t LTOIRSize;
NVRTC_SAFE_CALL(nvrtcGetLTOIRSize(prog, <OIRSize));
char *LTOIR = new char[LTOIRSize];
NVRTC_SAFE_CALL(nvrtcGetLTOIR(prog, LTOIR));
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUfunction kernel;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
// Load the generated LTO IR and the LTO IR generated offline
// and link them together.
nvJitLinkHandle handle;
// Dynamically determine the arch to link for
int major = 0;
int minor = 0;
CUDA_SAFE_CALL(cuDeviceGetAttribute(&major,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
CUDA_SAFE_CALL(cuDeviceGetAttribute(&minor,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
int arch = major*10 + minor;
char smbuf[16];
sprintf(smbuf, "-arch=sm_%d", arch);
const char *lopts[] = {"-dlto", smbuf};
NVJITLINK_SAFE_CALL(handle, nvJitLinkCreate(&handle, 2, lopts));
// NOTE: assumes "offline.fatbin" is in the current directory
// The fatbinary contains LTO IR generated offline using nvcc
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddFile(handle, NVJITLINK_INPUT_FATBIN,
"offline.fatbin"));
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddData(handle, NVJITLINK_INPUT_LTOIR,
(void *)LTOIR, LTOIRSize, "lto_online"));
// The call to nvJitLinkComplete causes linker to link together the two
// LTO IR modules (offline and online), do optimization on the linked LTO IR,
// and generate cubin from it.
NVJITLINK_SAFE_CALL(handle, nvJitLinkComplete(handle));
size_t cubinSize;
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubinSize(handle, &cubinSize));
void *cubin = malloc(cubinSize);
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubin(handle, cubin));
NVJITLINK_SAFE_CALL(handle, nvJitLinkDestroy(&handle));
CUDA_SAFE_CALL(cuModuleLoadData(&module, cubin));
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, "saxpy"));
// Generate input for execution, and create output buffers.
size_t n = NUM_THREADS * NUM_BLOCKS;
size_t bufferSize = n * sizeof(float);
float a = 5.1f;
float *hX = new float[n], *hY = new float[n], *hOut = new float[n];
for (size_t i = 0; i < n; ++i) {
hX[i] = static_cast<float>(i);
hY[i] = static_cast<float>(i * 2);
}
CUdeviceptr dX, dY, dOut;
CUDA_SAFE_CALL(cuMemAlloc(&dX, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dY, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dOut, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dX, hX, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dY, hY, bufferSize));
// Execute SAXPY.
void *args[] = { &a, &dX, &dY, &dOut, &n };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
NUM_BLOCKS, 1, 1, // grid dim
NUM_THREADS, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve and print output.
CUDA_SAFE_CALL(cuMemcpyDtoH(hOut, dOut, bufferSize));
for (size_t i = 0; i < n; ++i) {
std::cout << a << " * " << hX[i] << " + " << hY[i]
<< " = " << hOut[i] << '\n';
}
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dX));
CUDA_SAFE_CALL(cuMemFree(dY));
CUDA_SAFE_CALL(cuMemFree(dOut));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
free(cubin);
delete[] hX;
delete[] hY;
delete[] hOut;
delete[] LTOIR;
return 0;
}
14.3. Device LTO Build Instructions
Assuming the environment variable CUDA_PATH
points to the CUDA Toolkit installation directory, build this example as:
-
Compile offline.cu to fatbinary containing LTO IR (change
lto_52
to a different lto_XX architecture as appropriate).nvcc -arch lto_52 -rdc=true -fatbin offline.cu
-
With NVRTC shared library:
-
Windows:
cl.exe online.cpp /Feonline ^ /I "%CUDA_PATH%\include" ^ "%CUDA_PATH%"\lib\x64\nvrtc.lib ^ "%CUDA_PATH%"\lib\x64\nvJitLink.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib
-
Linux:
g++ online.cpp -o online \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc -lnvJitLink -lcuda \ -Wl,-rpath,$CUDA_PATH/lib64
-
-
With NVRTC static library:
-
Windows:
cl.exe online.cpp /Feonline ^ /I "%CUDA_PATH%"\include ^ "%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^ "%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^ "%CUDA_PATH%"\lib\x64\nvJitLink_static.lib ^ "%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^ "%CUDA_PATH%"\lib\x64\cuda.lib user32.lib Ws2_32.lib
-
Linux:
g++ online.cpp -o online \ -I $CUDA_PATH/include \ -L $CUDA_PATH/lib64 \ -lnvrtc_static -lnvrtc-builtins_static -lnvJitLink_static -lnvptxcompiler_static -lcuda \ -lpthread
-
14.4. Notices
14.4.1. Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.
14.4.2. OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.
14.4.3. Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.