DeepStream-3D Custom Apps and Libs Tutorials#

ds3d framework, interfaces and custom-libs are designed for DeepStream-3D processing. ds3d is agnostic from Gstreamer/Glib frameworks. These interfaces are capble of different types of data fusion. Developers can implement different types of custom libraries for dataloader, datafilter and datarender. The interface has ABI compatible layers and modern C++ interface. Developers only need to focus on the modern C++ interface for application or custom lib development.

DS3D dataloader is loaded by GstAppSrc, enabling its utilization for depth cameras like stereo cameras and Time-of-Flight cameras to capture image/depth data or load data from the file system. Additionally, it can be employed for capturing lidar data from sensors or lidar data files. datafilter is loaded by the nvds3dfilter Gst-plugin. It could be used for 2D depth data processing , 3D point-cloud data extraction from depth, other 2D-depth or 3D-points data filters and lidar or 3D data inference. datarender is loaded by GstAppSink. It could be used for 2D depth rendering and 3D point-cloud and lidar data rendering. It also could be used for file dump.

DS3D Application Examples#

  • DeepStream-3D Multi-Modal Lidar and Camera Sensor Fusion App sample application showcases a multi-modal sensor fusion pipeline for LiDAR and camera data using the DS3D framework. There are 2 examples of multi-modal sensor fusion pipelines inside the samples. The sample app is located at /opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream-3d-lidar-sensor-fusion.

    • Refer to DeepStream 3D Multi-Modal Lidar and Camera Sensor Fusion App to see more details of deepstream-3d-lidar-sensor-fusion

    • DS3D BEVFusion pipeline shows the overview of 6-camera plus 1-LiDAR data fusion inference and rendering pipeline through deepstream-3d-lidar-sensor-fusion.

      DeepStream 3D Lidar BEVFusion pipeline overview
    • DS3D V2XFusion pipeline shows the overview of 1-camera plus 1-LiDAR with batch 4 data input fusion inference and rendering pipeline through deepstream-3d-lidar-sensor-fusion.

      DeepStream 3D Lidar V2XFusion pipeline overview
  • deepstream-lidar-inference has the sample code to load these custom libs and to connect these components together in simple ways. Besides that, DS3D has a simple C++ safe pointer for Gstreamer components. The interfaces are found in header files located at /opt/nvidia/deepstream/deepstream/sources/libs/ds3d/gst/.

The image below shows the overview of lidar 3D data inference and rendering pipeline in deepstream-lidar-inference.

DeepStream Lidar point cloud inference and rendering overview

See more details in the DeepStream 3D Lidar Inference App.

The image below shows the overview of depth to 3D point processing pipeline in deepstream-3d-depth-camera.

DeepStream Depth Camera for 3D point cloud processing overview

See more details in the DeepStream 3D Depth Camera App.

All the components are configured in YAML format. They are loaded by Gst-plugins.There are 3 major components, they may all be loaded into the deepstream pipeline.

DS3D data format ds3d/datamap#

ds3d/datamap recognizes the data format used in DS3D framework. Data buffers flowing between GStreamer plugins will be of this data-type. ds3d/datamap are key-value pairs where key is a string and value, a pointer, structure or tensor frame to data. All of the operations on the buffer is managed by GuardDataMap.

Examples:

  • Create GuardDataMap datamap and set scaler key-values.

    #include <ds3d/common/hpp/datamap.hpp>
    using namespace ds3d;
    
    GuardDataMap datamap(NvDs3d_CreateDataHashMap(), true); // creat a empty datamap
    TimeStamp ts{0};
    datamap.setData("DS3D::Timestamp", ts); // set timestamp
    
    float score = 0.1;
    datamap.setData("DS3D::Score", score); // copy score into datamap
    
  • User-defined structure added into ds3d datamap.

    ds3d datamap requires each data type having a typeid: uint64_t before adding the data into datamap. This could prevent any wrong datatype casting in runtime. To achieve that, there are 2 ways to enable a typeid for a structure.

    Example 1, use REGISTER_TYPE_ID directly in custom data structure definition. this is mostly used when users define a new structure.

    #define DS3D_TYPEID_TIMESTAMP 0x20002
    struct TimeStamp {
      uint64_t t0 = 0;
      uint64_t t1 = 0;
      uint64_t t2 = 0;
      REGISTER_TYPE_ID(DS3D_TYPEID_TIMESTAMP)
    };
    
    // Add the shared_ptr into datamap
    std::shared_ptr<TimeStamp> timePtr(new TimeStamp);
    datamap.setPtrData("DS3D::Timestamp0", timePtr);
    
    // Add a copy of the TimeStamp into datamap
    TimeStamp time1;
    datamap.setData("DS3D::Timestamp1", time1);
    

    Example 2, Instantiate template struct TpId<> { static constexpr TIdType __typeid(); }, this is helpful when adding a 3rdparty data structure into datamap and not able to modify the 3rd-party existing DataStructure.

    // this is the 3rd-party structure
    struct Existing3rdpartData {
      float v0;
      int v1;
    };
    
    // derive ds3d::__TypeID for any 3rdparty data structure.
    #incude "ds3d/common/type_trait.h"
    #define DS3D_TYPEID_EXISTING_3RDPART_DATA 0x80001
    namespace ds3d {
    template <>
    struct TpId<Existing3rdpartData>: __TypeID<DS3D_TYPEID_EXISTING_3RDPART_DATA> {};
    }
    
    // Add the shared_ptr into datamap
    std::shared_ptr<Existing3rdpartData> dataPtr(new Existing3rdpartData);
    datamap.setPtrData("3rdpartyData0", dataPtr);
    
    // Add a copy of the Existing3rdpartData into datamap
    Existing3rdpartData data3rdparty{0.0f, 0};
    datamap.setData("3rdpartyData1", data3rdparty);
    
  • Create LiDAR tensor frame and add into GuardDataMap datamap.

    std::vector<vec4f> lidardata = {
        {{-5.0f, -5.0f, -3.0f, 0.6f}}, {{-5.0f, -5.0f, -3.0f, 0.85f}},
        {{1.0f, 0.5f, -1.0f, 0.82f}}, {{-5.0f, -5.0f, -3.0f, 0.8f}},
    };
    void* pointPtr = (void*)(&lidardata[0]);
    uint32_t pointsN = lidardata.size();
    FrameGuard lidarFrame = wrapLidarXYZIFrame<float>(
        (void*)pointPtr, pointsN, MemType::kCpu, 0,
    [holder = std::move(lidardata)](void*) {}); // lambda deleter
    
    const std::string keyName = "DS3D::LidarXYZI"; // user define a key name.
    // setGuardData holds a reference_count on the lidarFrame without deep-copy
    datamap.setGuardData(keyName, lidarFrame);
    
  • Create 2D-Image tensor frame and add into GuardDataMap datamap.

    std::vector<vec4b> imagedata = {
        {{255, 0, 0, 255}}, {{0, 255, 0, 255}}, {{0, 255, 0, 255}},
        {{0, 0, 255, 255}}, {{255, 255, 0, 255}}, {{0, 255, 0, 255}},
    };
    uint32_t width = 3, height = 2;
    Frame2DPlane colorPlane = {width, height, (uint32_t)sizeof(vec4b) * width, sizeof(vec4b), 0};
    void* colorPtr = (void*)(&imagedata[0]);
    uint32_t bytes = colorPlane.pitchInBytes * colorPlane.height;
    
    Frame2DGuard imageFrame = impl::Wrap2DFrame<uint8_t, FrameType::kColorRGBA>(
      colorPtr, {colorPlane}, bytes, MemType::kCpu, 0,
      [holder = std::move(imagedata)](void*) {}); // lambda deleter
    
    const std::string keyName = "DS3D::ColorFrame"; // user define a key name.
    // setGuardData holds a reference_count on the imageFrame without deep-copy
    datamap.setGuardData(keyName, imageFrame);
    
  • Create custom shaped tensor frame and add into GuardDataMap datamap.

    std::vector<float> tensordata = {
        0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.0f
    };
    void* tensorPtr = (void*)(&tensordata[0]);
    Shape tensorShape{3, {1, 3, 4}}; // tensor shape (1, 3, 4)
    uint32_t bytes = tensordata.size() * sizeof(tensordata[0]);
    FrameGuard tensorFrame = impl::WrapFrame<float, FrameType::kCustom>(
            tensorPtr, bytes, tensorShape, MemType::kCpu, 0,
            [holder = std::move(imagedata)](void*) {}); // lambda deleter
    
    const std::string keyName = "DS3D::dataarray"; // user define a key name.
    // setGuardData holds a reference_count on the tensorFrame without deep-copy
    datamap.setGuardData(keyName, tensorFrame);
    
  • Query data values from GuardDataMap datamap

    GuardDataMap::getGuardData, return a safe reference counted guard data GuardDataT<DataStructure> e.g. Frame2DGuard, FrameGuard, GuardDataT<TimeStamp> GuardDataMap::getPtrData, return a reference counted std::shared_ptr<DataStructure> e.g. std::shared_ptr<TimeStamp> GuardDataMap::getData, return a copy of the DataStructure. e.g. TimeStamp

    // example to use different ways to get timestamp.
    std::string timeKey = "DS3D::Timestamp";
    if (datamap.hasData(timeKey)) {
        // get a COPY of Timestamp
        TimeStamp t0;
        DS_ASSERT(isGood(datamap.getData(timeKey, t0));
    
        // get a std::shared_ptr of Timestamp
        std::shared_ptr<TimeStamp> tPtr;
        DS_ASSERT(isGood(datamap.getPtrData(timeKey, tPtr));
    
        // get a reference-counted GuardDataT<Timestamp>
        GuardDataT<TimeStamp> timeGuard;
        DS_ASSERT(isGood(datamap.getPtrData(timeKey, timeGuard));
    
    // example to get a lidar tensor frame
    FrameGuard pointFrame;
    std::string lidarKey = "DS3D::LidarXYZI";
    if (datamap.hasData(lidarKey)) { // get lidar tensor frame
        // pointFrame holds a reference count
        DS_ASSERT(isGood(dataMap.getGuardData(lidarKey, pointFrame)));
        DataType dType = pointFrame->dataType();
        FrameType frameType = pointFrame->frameType();
        MemType memType = pointFrame->memType();
        Shape pShape = pointFrame->shape();
        void *dataPtr = pointFrame->base();
        size_t dataBytes = pointFrame->bytes();
    }
    
    // example to get a RGBA image tensor frame
    Frame2DGuard rgbaImage;
    std::string imageKey = "DS3D::ColorFrame";
    if (datamap.hasData(imageKey)) { // get 2D image tensor frame
        // rgbaImage holds a reference count
        DS_ASSERT(isGood(dataMap.getGuardData(imageKey, rgbaImage)));
        DataType dType = rgbaImage->dataType();
        FrameType frameType = rgbaImage->frameType();
        MemType memType = rgbaImage->memType();
        Shape pShape = rgbaImage->shape();
        void *dataPtr = rgbaImage->base();
        size_t dataBytes = rgbaImage->bytes();
        DS_ASSERT(rgbaImage->planes() == 1); // RGBA image has 1 plane.
        Frame2DPlane plane = rgbaImage->getPlane(0);
    }
    
    // example to get a custom shaped tensor frame, e.g. data_array
    FrameGuard tensorFrame;
    std::string tensorKey = "DS3D::dataarray";
    if (datamap.hasData(tensorKey)) { // get any tensor frame
        // tensorFrame holds a reference count
        DS_ASSERT(isGood(dataMap.getGuardData(tensorKey, tensorFrame)));
        DataType dType = tensorFrame->dataType();
        FrameType frameType = tensorFrame->frameType();
        MemType memType = tensorFrame->memType();
        Shape pShape = tensorFrame->shape();
        void *dataPtr = tensorFrame->base();
        size_t dataBytes = tensorFrame->bytes();
    }
    

DS3D DataMap interoperate with GstBuffer#

DS3D DataMap has ABI-compatible class ds3d::abiRefDataMap. With that, NvDs3DBuffer is defined for storing DS3D datamap along with GstBuffer. Header file is ds3d/gst/nvds3d_meta.h.

struct NvDs3DBuffer {
    uint32_t magicID;  // must be 'DS3D'
    ds3d::abiRefDataMap* datamap;
};

Warning

Do not use the datamap directly. The easy and safe way to access that is through GuardDataMap. see examples below

  • Example to get datamap from GstBuffer

#include <ds3d/common/hpp/datamap.hpp>
#include <ds3d/common/hpp/frame.hpp>
using namespace ds3d;

GstBuffer *gstBuf = ; // get the gstBuf from probe function or Gstreamer plugins
if (NvDs3D_IsDs3DBuf(gstBuf)) {
  const abiRefDataMap* refDataMap = nullptr;
  ErrCode c = NvDs3D_Find1stDataMap(gstBuf, refDataMap);
  if (refDataMap) {
    GuardDataMap dataMap(*refDataMap);
    FrameGuard lidarFrame;
    c = dataMap.getGuardData("DS3D::LidarXYZI", pointFrame); // get lidar points reference.

    FrameGuard uvCoord;
    c = dataMap.getGuardData("DS3D::TextureCoordKey", uvCoord); // get 3D points UV coordinates reference.

    Frame2DGuard depthFrame;
    c = dataMap.getGuardData("DS3D::DepthFrame", depthFrame); // get depth frame reference.

    DepthScale scale;
    c = dataMap.getData("DS3D::DepthScaleUnit", scale); // copy depth scale
  }

}
  • Example to createa a ds3d::datamap into a new GstBuffer

    #include <ds3d/common/hpp/datamap.hpp>
    #include <ds3d/common/hpp/frame.hpp>
    #include <ds3d/common/impl/impl_frames.h>
    GuardDataMap datamap(NvDs3d_CreateDataHashMap(), true); // set true to take the reference ownership.
    
    /* Create color image frame and store them into ds3d datamap. */
    // Assume format is RGBA
    {
      Frame2DPlane colorPlane = {1920, 1080, 1920 * sizeof(uint8_t) , sizeof(uint8_t), 0};
      uint32_t colorBytesPerFrame = colorPlane.pitchInBytes * colorPlane.height;
      std::vector<uint8_t> data(colorBytesPerFrame); // Image data
      void* dataPtr = &data[0];
      // create color 2D frame
      Frame2DGuard frame = Wrap2DFrame<uint8_t, FrameType::kColorRGBA>(
            dataPtr, {_config.colorPlane}, bytesPerFrame, MemType::kCpu, 0,
            [data = std::move(data)](void*) {});
      c = datamap.setGuardData(kColorFrame, colorFrame); // store colorFrame reference into datamap.
      ... // check error code
    }
    

    Once datamap is ready, you can create a new GstBuffer with DS3D datamap.

    // ``GuardDataMap datamap`` is ready
    GstBuffer* gstBuf = nullptr;
    ErrCode c = NvDs3D_CreateGstBuf(gstBuf, datamap.abiRef(), false); // set false to increase reference count.
    ... // check error code
    
  • Example to update an existing DS3D GstBuffer with a new ds3d datamap.

    // Assume ``GuardDataMap datamap`` is ready
    // Assume ``GstBuffer* gstBuf`` is created by another compoment
    ErrCode c = NvDs3D_UpdateDataMap(gstBuf, datamap.abiRef(), false); // set false to increase reference count.
      ... // check error code
    

ds3d::dataloader - Load Custom Lib for Data Capture#

Load and Manage DS3D Dataloader#

Examples:

name: realsense_dataloader
type: ds3d::dataloader
out_caps: ds3d/datamap
custom_lib_path: libnvds_3d_dataloader_realsense.so
custom_create_function: createRealsenseDataloader
config_body:
  streams: [color, depth]

A custom dataloader must have type: ds3d::dataloader. It is created by explicit call of NvDs3D_CreateDataLoaderSrc(srcConfig, loaderSrc, start) with the full compoment YAML content. During this call, the custom_lib_path is loaded and a specific data loader is created via custom_create_function. A GstAppsrc object is also created into loaderSrc.gstElement.

GstAppsrc manages the ds3d::dataloader dataflows. This ds3d::dataloader component could be started automatically by gst-pipeline or manually by the application call.

GuardDataLoader dataloader = loaderSrc.customProcessor;
ErrCode c = dataloader.start();

To stop the dataloader, user can set GstAppsrc states to GST_STATE_READY or stop it manually.

GuardDataLoader dataloader = loaderSrc.customProcessor;
ErrCode c = dataloader.stop();

DS3D Dataloader in DeepStream User Application#

DS3D Custom Dataloaders are agnostic from Gstreamer/Glib Framework. But it could be working with Gstramer as well. The ds3d::dataloader could interactively work with GstAppSrc together. They could be created by NvDs3D_CreateDataLoaderSrc.

Examples:

#include <ds3d/common/config.h>
#include <ds3d/gst/nvds3d_gst_plugin.h>

std::string yamlStr = R"(
  name: ds3d_lidar_file_source
  type: ds3d::dataloader
  out_caps: ds3d/datamap
  custom_lib_path: libnvds_lidarfileread.so
  custom_create_function: createLidarFileLoader
  config_body:
    data_config_file: lidar_data_list.yaml
    points_num: 242180
    mem_type: gpu # choose [cpu gpu]
    gpu_id: 0
    mem_pool_size: 6
    element_size: 4
    output_datamap_key: DS3D::LidarXYZI
)";

ErrCode c = ErrCode::kGood;
ComponentConfig config;
c = parseComponentConfig(yamlStr.c_str(), "./config_lidar_loader.yaml", config);
DS_ASSERT(config.type == ComponentType::kDataLoader);
DS_ASSERT(config.customLibPath == "libnvds_lidarfileread.so");
DS_ASSERT(config.customCreateFunction == "createLidarFileLoader");

gst::DataLoaderSrc appLoader;
c = NvDs3D_CreateDataLoaderSrc(c, appLoader, true);
// get DS3D custom dataloader.
GuardDataLoader dataLoader = appLoader.customProcessor;
// get GstAppSrc from this appLoader;
GstElement* appsrc = appLoader.gstElement.get();

// gstreamer pipeline setup and running.
// during each read_data from GstAppSrc callback. it would simultaneously reading data from dataloader
// GuardDataMap datamap;
// dataloader.read_data(datamap);

// DS3D dataloader would stop qutomatically when Gstpipeline is stopped.
// But in the case if user want to stop it early or manually.
// Obtain DS3D custom dataloader and stop manually.
c = dataloader.flush();
c = dataloader.stop();

GuardDataLoader provides safe access to abiDataLoader. Once it’s created, it will maintain the reference pointer to the dataloader.

Implement a DS3D Custom Dataloader#

Examples:

#include <ds3d/common/impl/impl_dataloader.h>
class TestTimeDataLoader : public ds3d::impl::SyncImplDataLoader {
public:
    TestTimeDataLoader() = default;

protected:
    ErrCode startImpl(const std::string& content, const std::string& path) override
    {
        setOutputCaps("ds3d/datamap");
        return ErrCode::kGood;
    }
    ErrCode readDataImpl(GuardDataMap& datamap) override
    {
        datamap.reset(NvDs3d_CreateDataHashMap());
        static uint64_t iTime = 0;
        TimeStamp t{iTime++, 0, 0};
        datamap.setData("time", t);
        emitError(ErrCode::kGood, "timstamp added");
        return ErrCode::kGood;
    }
    ErrCode stopImpl() override { return ErrCode::kGood; }
    ErrCode flushImpl() override { return ErrCode::kGood; }
};

DS3D_EXTERN_C_BEGIN
DS3D_EXPORT_API abiRefDataLoader*
createTestTimeDataloader()
{
    return NewAbiRef<abiDataLoader>(new TestTimeDataLoader);
}
DS3D_EXTERN_C_END

A shown in the example above, You’ll need to derive dataloader from the ds3d::impl::SyncImplDataLoader class, and implement interfaces for the following:

ErrCode startImpl(const std::string& content, const std::string& path) override;
ErrCode readDataImpl(GuardDataMap& datamap) override;
ErrCode stopImpl() override;
ErrCode flushImpl() override;

ds3d::databridge - Loads Custom Lib for data conversion to and from DS3D.#

This plugin and custom lib helps convert data type to and from ds3d/datamap

More details: Gst-nvds3dbridge.

ds3d::datafilter- DS3D Custom DataFilter#

DS3D DataFilter is processing inputs from ds3d::datamap and producing outputs input new ds3d::datamap. Users can implement custom datafilter lib for their own use case.

Create And Manage DS3D Datafilter in DeepStream App#

Examples:

#include <ds3d/common/config.h>
#include <ds3d/gst/nvds3d_gst_ptr.h>
#include <ds3d/gst/nvds3d_gst_plugin.h>

std::string yamlStr = R"(
  name: fusion_inference
  type: ds3d::datafilter
  in_caps: ds3d/datamap
  out_caps: ds3d/datamap
  custom_lib_path: libnvds_tritoninferfilter.so
  custom_create_function: createLidarInferenceFilter
  config_body:
    mem_pool_size: 2
    model_inputs:
    config_file: model_config_files/config_triton_bev_fusion_infer_grpc.pbtxt
    - name: input_image_0
      datatype: UINT8
      shape: [1, 900, 1600, 4]
      from: DS3D::ColorFrame_0+1
      is_2d_frame: true
    - name: input_lidar
      datatype: FP32
      shape: [242180, 4]
      from: DS3D::LidarXYZI+0
)";

gst::ElePtr gstPlugin = gst::elementMake("nvds3dfilter", "ds3d-custom-filter");
g_object_set(G_OBJECT(gstPlugin.get()), "config-content", yamlStr.c_str(), nullptr);
GstElement* ele = gstPlugin.get();

A custom datafilter must have type: ds3d::datafilter. It is loaded through the nvds3dfilter Gst-plugin. It is started by gst_element_set_state(GST_STATE_READY). During this call, the custom_lib_path is loaded and a specific data filter is created by custom_create_function. nvds3dfilter Gst-plugin has config-content and config-file properties. One of them must be set to create a datafilter object.

Implement a Custom DS3D Datafilter#

Examples:

#include <ds3d/common/impl/impl_datafilter.h>
class TestFakeDataFilter : public impl::BaseImplDataFilter {
public:
    TestFakeDataFilter() = default;

protected:
    ErrCode startImpl(const std::string& content, const std::string& path) override
    {
        setInputCaps(kFakeCapsMetaName);
        setOutputCaps(kFakeCapsMetaName);
        return ErrCode::kGood;
    }
    ErrCode processImpl(
        GuardDataMap datamap, OnGuardDataCBImpl outputDataCb,
        OnGuardDataCBImpl inputConsumedCb) override
    {
        DS_ASSERT(datamap);
        TimeStamp t;
        ErrCode c = datamap.getData("time", t);
        if (!isGood(c)) {
            return c;
        }
        t.t0 += 1;
        inputConsumedCb(ErrCode::kGood, datamap);
        c = datamap.setData("time", t);
        if (!isGood(c)) {
            return c;
        }
        outputDataCb(ErrCode::kGood, datamap);
        return ErrCode::kGood;
    }

    ErrCode flushImpl() override { return ErrCode::kGood; }
    ErrCode stopImpl() override { return ErrCode::kGood; }
};

DS3D_EXTERN_C_BEGIN
DS3D_EXPORT_API abiRefdatafilter*
createTestFakeDatafilter()
{
    return NewAbiRef<abidatafilter>(new TestFakeDataFilter);
}
DS3D_EXTERN_C_END

As shown in the example above, you’ll need to derive the datafilter from the ds3d::impl::BaseImplDataFilter class, and implement interfaces for the following:

ErrCode startImpl(const std::string& content, const std::string& path) override;
ErrCode processImpl(
        GuardDataMap datamap, OnGuardDataCBImpl outputDataCb,
        OnGuardDataCBImpl inputConsumedCb) override;
ErrCode stopImpl() override;
ErrCode flushImpl() override;

To load this custom lib through nvds3dfilter Gst-plugin, you’ll also need to export a specific symbol createTestFakeDatafilter.

ds3d::datarender - Loads DS3D Custom DataRender#

DS3D Custom DataRenders are agnostic from Gstreamer/Glib Framework. But it could be working with Gstramer as well. The ds3d::datarender could interactively work with GstAppSink together. They could be created by NvDs3D_CreateDataRenderSink.

Examples:

Load And Manage DS3D Datarender#

Examples:

#include <ds3d/common/config.h>
#include <ds3d/gst/nvds3d_gst_plugin.h>

std::string yamlStr = R"(
            name: lidar_render
            type: ds3d::datarender
            in_caps: ds3d/datamap
            custom_lib_path: libnvds_3d_gl_datarender.so
            custom_create_function: createLidarDataRender
            gst_properties:
              sync: True
              async: False
              drop: False
            config_body:
              title: ds3d-lidar-render
              streams: [lidardata]
              width: 1280
              height: 720
              block: True
              view_position: [0, 0, 60]
              view_target: [0, 0, 0]
              view_up: [0, 1, 0]
              near: 0.3
              far: 100
              fov: 50
              lidar_color: [0, 255, 0]
              lidar_data_key: DS3D::LidarXYZI
              element_size: 4
              lidar_bbox_key: DS3D::Lidar3DBboxRawData
              enable_label: True
)";

ErrCode c = ErrCode::kGood;
ComponentConfig config;
c = parseComponentConfig(yamlStr.c_str(), "./config_lidar_loader.yaml", config);
DS_ASSERT(config.type == ComponentType::kDataRender);
DS_ASSERT(config.customLibPath == "libnvds_3d_gl_datarender.so");
DS_ASSERT(config.customCreateFunction == "createLidarDataRender");

gst::DataRenderSink appRender;
c = NvDs3D_CreateDataRenderSink(config, appRender, true);
// get DS3D custom datarender.
GuardDataRender datarender = appRender.customProcessor;
// get GstAppSink from this appRender;
GstElement* appsink = appRender.gstElement.get();

// gstreamer pipeline setup and running.
// during each render_data from GstAppSink callback. it would simultaneously reading data from datarender
// datarender.render(datamap, consumed_callback);

// DS3D datarender would stop qutomatically when Gstpipeline is stopped.
// But in the case if user want to stop it early or manually.
// Obtain DS3D custom datarender and stop manually.
c = datarender.stop();

A custom datarender must have type: ds3d::datarender. It is created by explicit call of NvDs3D_CreateDataRenderSink(sinkConfig, renderSink, start) with the full compoment YAML content. During this call, the custom_lib_path is loaded and a specific data loader is created via custom_create_function. A GstAppsink object is also created into renderSink.gstElement.

GstAppsink manages the ds3d::datarender dataflows. This ds3d::datarender component could be automatically started by the gst-pipeline, or manually by the application call.

GuardDataRender datarender = renderSink.customProcessor;
ErrCode c = datarender.start();

To stop the datarender, you can set GstAppsink states to GST_STATE_READY, or stop manually. .. code-block:: text

GuardDataRender datarender = renderSink.customProcessor; ErrCode c = datarender.stop();

GuardDataRender provides safe access to abidatarender. Once it’s created, it will maintain the reference pointer to datarender. preroll is called only once to initialize some resources.

Implement a DS3D Custom Datarender#

Examples:

#include <ds3d/common/impl/impl_datarender.h>
class TestFakeDataRender : public impl::BaseImplDataRender {
public:
    TestFakeDataRender() = default;

protected:
    ErrCode startImpl(const std::string& content, const std::string& path) override
    {
        setInputCaps("ds3d/datamap");
        return ErrCode::kGood;
    }
    ErrCode prerollImpl(GuardDataMap datamap) override { return ErrCode::kGood; }
    ErrCode renderImpl(GuardDataMap datamap, OnGuardDataCBImpl dataDoneCb) override
    {
        DS_ASSERT(datamap);
        emitError(ErrCode::kGood, "data rendered");
        dataDoneCb(ErrCode::kGood, datamap);
        return ErrCode::kGood;
    }
    ErrCode flushImpl() override { return ErrCode::kGood; }
    ErrCode stopImpl() override { return ErrCode::kGood; }
};

DS3D_EXTERN_C_BEGIN
DS3D_EXPORT_API abiRefdatarender*
createTestFakedatarender()
{
    return NewAbiRef<abiDataRender>(new TestFakeDataRender());
}
DS3D_EXTERN_C_END

As shown in the example above, you’ll need to derive datarender from the ds3d::impl::BaseImplDataRender class, and implement interfaces for the following:

ErrCode startImpl(const std::string& content, const std::string& path) override;
ErrCode prerollImpl(GuardDataMap datamap) override;
ErrCode renderImpl(GuardDataMap datamap, OnGuardDataCBImpl dataDoneCb) override;
ErrCode stopImpl() override;
ErrCode flushImpl() override;

To load this custom lib through NvDs3D_CreateDataRenderSink, you’ll also need to export a specific symbol createTestFakedatarender.

Custom Libs Configuration Specifications#

Components Common Configuration Specifications#

ds3d common configuration specifications#

Property

Meaning

Type and Range

Example

type

Custom processor type

String, [ds3d::dataloader, ds3d::datafilter, ds3d::datarender]

type: ds3d::dataloader

name

Indicate user-defined component name

String

name: depthloader

in_caps

Indicate Gst sink caps for the component

String

in_caps: ds3d/datamap

out_caps

Indicate Gst sink caps for the component

String

out_caps: ds3d/datamap

custom_lib_path

Indicate custom lib path

String

custom_lib_path: libnvds_3d_gl_datarender.so

custom_create_function

Indicate custom function to create the specific ds3d processing component

String

custom_create_function: createPointCloudDataRender

config_body

Indicate YAML specific content for the custom comonent

String

config_body:

in_streams: [color, depth] max_points: 407040

These custom libs are part of DeepStream release package.

Supported DS3D Custom Process libraries#

DS3D custom libs#

DS3D Process Type

Functionality

DS3D custom library

DS3D Creating Instance Function

Description

dataloader

lidar-file-reader

libnvds_lidarfileread.so

createLidarFileLoader

Lidar file data reader library, see details in Custom Dataloader libnvds_lidarfileread Configuration Specifications

dataloader

realsense camera depth/image capture

libnvds_3d_dataloader_realsense.so

createRealsenseDataloader

RealSense Camera capture dataloader library, see details in Custom Dataloader libnvds_3d_dataloader_realsense Configuration Specifications

datafilter

multi sensor triton inference lib

libnvds_tritoninferfilter.so

createLidarInferenceFilter

Multi-modal sensor triton inference library, see details in libnvds_tritoninferfilter Configuration Specifications

datafilter

data_alignment

libnvds_3d_alignment_datafilter.so

createLidarAlignmentFilter

lidar/camera Sensor Intrinsic and Extrinsic parameters and alignment, see details in Custom ds3d::datafilter library: libnvds_3d_alignment_datafilter.so

datafilter

lidar_data_preprocess

libnvds_3d_lidar_preprocess_datafilter.so

createLidarPreprocessFilter

lidar data voxel processing, see details in Custom Datafilter libnvds_3d_lidar_preprocess_datafilter Specifications

datafilter

depth-to-point-cound

libnvds_3d_depth2point_datafilter.so

createDepth2PointFilter

Convert Image Depth data into 3D Point Cloud data, see details in Custom datafilter libnvds_3d_depth2point_datafilter Configuration Specifications

databridge

bridge 2D into DS3D

libnvds_3d_video_databridge.so

createVideoBridge2d3d

Convert DeepStream 2D batchmeta and surface into ds3d::datamap, see details in Configuration file

datamixer

mixer for video and lidar/radar

libnvds_3d_multisensor_mixer.so

createMultiSensorMixer

Combines video data (2D) and LiDAR data (3D) into a single ds3d::datamap, see details in Configuration file

datarender

3D multiview scene render

libnvds_3d_gles_ensemble_render.so

NvDs3D_CreateGlesEnsembleRender

Renders a 3D multi-view scene using GLES with with various elements (textures, LiDAR points, bounding boxes) inside ds3d::datamap, see details in Custom datarender libnvds_3d_gles_ensemble_render Configuration Specifications

datarender

3D point-cloud data render with texture

libnvds_3d_gl_datarender.so

createPointCloudDataRender

Renders 3D(Scene construction) PointCould(XYZ) data with RGBA color textures inside ds3d::datamap, see details in Custom datarender libnvds_3d_gl_datarender Configuration Specifications

datarender

3D lidar(XYZI/XYZ) data render

libnvds_3d_gl_datarender.so

createLidarDataRender

Renders 3D Lidar(XYZI/XYZ) data inside ds3d::datamap, see details in Custom datarender libnvds_3d_gl_datarender Configuration Specifications

datarender

depth image 2D render

libnvds_3d_gl_datarender.so

createDepthStreamDataRender

Renders 2D depth and Camera RGBA data inside ds3d::datamap, see details in Custom datarender libnvds_3d_gl_datarender Configuration Specifications

libnvds_tritoninferfilter Configuration Specifications#

Multi-modal tensors Triton inference with key-value pairs in ds3d::datamap, Supports user defined custom preprocess and postprocess.

  • Configuration for multi-modal triton inference Header:

    name: multimodal_triton_infer
    type: ds3d::datafilter
    in_caps: ds3d/datamap
    out_caps: ds3d/datamap
    custom_lib_path: libnvds_tritoninferfilter.so
    custom_create_function: createLidarInferenceFilter
    
  • Config body specifications

libnvds_tritoninferfilter config_body fields#

Property

Meaning

Type and Range

Example

in_streams

which data type will be processed

List of String, Optional

in_streams: [lidar]

gpu_id

GPU device ID

Integer, default value:0

gpu_id: 0

config_file

nvinferserver(triton) low level lib config file, supports gRPC and CAPI, see more details Low Level libnvds_infer_server.so Configuration File Specifications

String of Path

config_file: model_config_files/config_triton_bev_fusion_infer_grpc.pbtxt

mem_pool_size

Size of the input tensor pool

Integer

mem_pool_size: 8

model_inputs

model ‘s input layers information, If there is no custom_preprocess defined, inferencefilter would forward the key-value frames from ds3d::datamap to triton’s input tensor

List of Dict

  • name: input_image_0

    datatype: UINT8 shape: [1, 900, 1600, 4] from: DS3D::ColorFrame_0+1 is_2d_frame: true

input_tensor_mem_type

input tensor memory type after preprocess

String:[GpuCuda CpuCuda]

input_tensor_mem_type: GpuCuda

custom_preprocess_lib_path

custom preprocessing library path

String

custom_preprocess_lib_path: /opt/nvidia/deepstream/deepstream/lib/libnvds_lidar_custom_preprocess_impl.so

custom_preprocess_func_name

customized preprocessing function name

String

custom_preprocess_func_name: CreateInferServerCustomPreprocess

postprocess

User defined postprocessing information

Dict

postprocess:

score_threshold: 0.5

labels

User defined labels for custom postprocess

List of Dict

labels:
  • car:

    color: [255, 158, 0]

  • truck:

    color: [255, 99, 71]

model_inputs has all input layers information. If there is custom preprocess function/lib specfied inside config body. The lib would search from keyname of the input ds3d::datamap, and forward the frame/tensor data into Triton server’s input tensors. The from keyname must be a frame, 2D-frame or tensor inside the ds3d::datamap

  • Configuration Specifications of the model_inputs

items of list model_inputs#

Property

Description

Type and Range

Example

name

Model’s input tensor name

String

name: input_image_0

datatype

Model’s input data type

String values in [FP32, FP16, INT8, INT32, INT16, UINT8, UINT16, UINT32, FP64, INT64, UINT64, BYTES, BOOL]

datatype: FP32

shape

Model’s input tensor shape

List of Integer

shape: [1, 900, 1600, 4]

from

The keyname of the input ds3d::datamap, the value must be a frame/2D-frame/tensor. If custom_preprocess is not existing, the frame would be forwarded into Triton’s input tensors directly.

String

from: DS3D::ColorFrame_5

is_2d_frame

Indicate the from inside of ds3d::datamap is a 2D frame.

Bool

is_2d_frame: true

  • Custom preprocess before triton inference

If custom_preprocess_lib_path and custom_preprocess_func_name are specified, Custom processing will be loaded and parse the config body and get all common and user defined information. then process each input ds3d::datamap and generate batchArray for triton inference inputs.

Users can derive interface IInferCustomPreprocessor from sources/includes/ds3d/common/hpp/lidar_custom_process.hpp See examples in sources/libs/ds3d/inference_custom_lib/ds3d_v2x_infer_custom_preprocess/nvinferserver_custom_preprocess.cpp

#include <ds3d/common/hpp/datamap.hpp>
#include <ds3d/common/hpp/frame.hpp>
#include <ds3d/common/hpp/lidar_custom_process.hpp>
using namespace ds3d;
using namespace nvdsinferserver;
class NvInferServerCustomPreProcess : public IInferCustomPreprocessor {
public:
  // process key-values from datamap and generate into model inputs batchArray.
  NvDsInferStatus preproc(GuardDataMap &datamap, SharedIBatchArray batchArray, cudaStream_t stream) override {...}
};
extern "C" {
IInferCustomPreprocessor *CreateInferServerCustomPreprocess() {
  return new NvInferServerCustomPreProcess();
} }
  • Custom postprocess after triton inference

Postprocessing is quite specific for each model. You’ll need to implement your own postprocessing functions based on inference output tensors results. Custom postprocess libs and functions are specfied from nvdsinferserver’s config. for example in apps/sample_apps/deepstream-3d-lidar-sensor-fusion/model_config_files/config_triton_bev_fusion_infer_grpc.pbtxt

infer_config {
  backend {
    triton {
      model_name: "bevfusion"
      grpc {...}
  } }
  extra {
    output_buffer_pool_size: 4
    # specify custom postprocess function
    custom_process_funcion: "Nvds3d_CreateLidarDetectionPostprocess"
  }
  custom_lib {
    # specify custom postprocess library
    path: "libnvds_3d_infer_postprocess_lidar_detection.so"
  }
}

An example of custom postprocess implementation is provided here: sources/libs/ds3d/inference_custom_lib/ds3d_lidar_detection_postprocess/ds3d_infer_postprocess_lidar_detection.cpp

#include "infer_custom_process.h"
#include <ds3d/common/hpp/frame.hpp>
#include <ds3d/common/hpp/datamap.hpp>
using namespace ds3d;
using namespace nvdsinferserver;
class DS3DTritonLidarInferCustomPostProcess : public IInferCustomProcessor {
public:
  // process key-values from datamap and generate into model inputs batchArray.
  NvDsInferStatus inferenceDone(const IBatchArray* batchArray, const IOptions* inOptions) override {
   ...

    // get ``ds3d::datamap`` from ``inOptions``
    abiRefDataMap* refDataMap = nullptr;
    if (inOptions->hasValue(kLidarRefDataMap)) {
        INFER_ASSERT(inOptions->getObj(kLidarRefDataMap, refDataMap) == NVDSINFER_SUCCESS);
    }
    GuardDataMap dataMap(*refDataMap);
    ...
    // parsing output tensors from batchArray
    TensorMap outTensors;
    for (uint32_t i = 0; i < batchArray->getSize(); ++i) {
        auto buf = batchArray->getSafeBuf(i);
        outTensors[buf->getBufDesc().name] = buf;
    }
    std::vector<Lidar3DBbox> bboxes;
    ret = parseLidar3Dbbox(outTensors, bboxes);
    // warp data into ds3d frame ``bboxFrame``
    size_t bufBytes = sizeof(Lidar3DBbox) * bboxes.size();
    void* bufBase = (void*)bboxes.data();
    Shape shape{3, {1, (int)bboxes.size(), sizeof(Lidar3DBbox)}};
    FrameGuard bboxFrame = impl::WrapFrame<uint8_t, FrameType::kCustom>(
        bufBase, bufBytes, shape, MemType::kCpu, 0, [outdata = std::move(bboxes)](void*) {});
    // add key-value fram into ds3d::datamap
    ErrCode code = dataMap.setGuardData(_3dBboxKey, bboxFrame);
    ...
    return ret;
  }
};
extern "C" {
IInferCustomProcessor *Nvds3d_CreateLidarDetectionPostprocess() {
  return new DS3DTritonLidarInferCustomPostProcess();
} }

Custom Datafilter libnvds_3d_alignment_datafilter Specifications#

Data alignment for lidar and video data can be done using a custom library provided with DeepStreamSDK.

More details on this is here: Custom ds3d::datafilter library: libnvds_3d_alignment_datafilter.so.

Custom Datafilter libnvds_3d_lidar_preprocess_datafilter Specifications#

LiDAR data preprocess into voxel data format before V2X model sensor fusion inference. Source files located at /opt/nvidia/deepstream/deepstream/sources/libs/ds3d/datafilter/lidar_preprocess

  • Configuration for Lidar data preprocess ds3d::datafilter Header:

    name: lidarpreprocess
    type: ds3d::datafilter
    out_caps: ds3d/datamap
    custom_lib_path: libnvds_3d_lidar_preprocess_datafilter.so
    custom_create_function: createLidarPreprocessFilter
    
  • Config Body Specifications

For example:

config_body:
mem_pool_size: 4
filter_input_datamap_key: DS3D::LidarXYZI_0
model_inputs:
- name: feats
  datatype: FP16
  shape: [4, 8000, 10, 9]
- name: coords
  datatype: INT32
  shape: [4, 8000, 4]
- name: N
  datatype: INT32
  shape: [4, 1]
gpu_id: 0
input_tensor_mem_type: GpuCuda
lidar_data_from: [DS3D::LidarXYZI_0, DS3D::LidarXYZI_1, DS3D::LidarXYZI_2, DS3D::LidarXYZI_3]
output_features_tensor_key: DS3D::LidarFeatureTensor
output_coords_tensor_key: DS3D::LidarCoordTensor
output_num_tensor_key: DS3D::LidarPointNumTensor
DS3D libnvds_3d_lidar_preprocess_datafilter custom libs#

Property

Description

Type and Range

Example

mem_pool_size

memory buffer pool size

Integer

mem_pool_size: 4

filter_input_datamap_key

Specify input lidar data key name

String

filter_input_datamap_key: DS3D::LidarXYZI_0

model_inputs

Specify model input layers info

Dict

see exmaple in deepstrem-3d-lidar-sensor-fusion/ds3d_lidar_video_sensor_v2xfusion.yml

gpu_id

Specify GPU ID

Integer

gpu_id: 0

input_tensor_mem_type

Specify model input tensors memory type

String, select value from [GpuCuda, CpuCuda]

input_tensor_mem_type: GpuCuda

lidar_data_from

Specify lidar data key name

List of String

lidar_data_from: [DS3D::LidarXYZI_0]

output_features_tensor_key

Specify output lidar feature tensor key name

String

DS3D::LidarFeatureTensor

output_coords_tensor_key

Specify output lidar coordinate tensor key name

String

output_coords_tensor_key: DS3D::LidarCoordTensor

output_num_tensor_key

Specify keyname of numbers of ldiar data into tensor

String

output_num_tensor_key: DS3D::LidarPointNumTensor

Custom Dataloader libnvds_lidarfileread Configuration Specifications#

The lib reads lidar data file frame by frame, it creates a new ds3d::datamap per frame and deliver to next compoment. Source files located at /opt/nvidia/deepstream/deepstream/sources/libs/ds3d/dataloader/lidarsource

  • Configuration for Lidar file reader ds3d::dataloader Header:

    name: ds3d_lidar_file_source
    type: ds3d::dataloader
    out_caps: ds3d/datamap
    custom_lib_path: libnvds_lidarfileread.so
    custom_create_function: createLidarFileLoader
    
  • Config Body Specifications

For example:

config_body:
  data_config_file: lidar_nuscene_data_list.yaml
  points_num: 242180
  fixed_points_num: True
  lidar_datatype: FP32
  mem_type: gpu
  gpu_id: 0
  mem_pool_size: 6
  element_size: 4
  output_datamap_key: DS3D::LidarXYZI
  file_loop: True
DS3D libnvds_lidarfileread custom libs#

Property

Description

Type and Range

Example

data_config_file

lidar data list file path

Path String, or List of Path String

data_config_file: lidar_data_list.yaml

source_id

Specify the unique source id of the loader instance

Integer

source_id: 0

points_num

Specify point number of each frame

Integer

points_num: 70000

fixed_points_num

Indicate the point number is always same as points_num

Bool

fixed_points_num: False

lidar_datatype

Specify Lidar data type

String, Only FP32 supported for now.

lidar_datatype: FP32

mem_type

Specify memory type of process data, supports [cpu, gpu]

String, [cpu, gpu]

mem_type: gpu

mem_pool_size

Specify buffer pool size allocated for frames

Integer

mem_pool_size: 16

gpu_id

Specify GPU ID in the case of mem_type: gpu

Integer

gpu_id: 0

element_size

Specify how manay elements will be read per each point. 3, means XYZ, 4, means XYZI.

Integer

element_size: 4

element_stride

Specify element stride between 2 continous points. e.g. XYZI, stride:4, XYZIT,5

Integer

element_stride: 4

file_loop

Indicate whether loop the file list without EOS

Bool

file_loop: True

output_datamap_key

Specify output frame keyname into the ds3d::datamap

String or List of String

output_datamap_key: DS3D::LidarXYZI_0

  • lidar data config file

The lib reads frames from data_config_file which is a seperate file containers multiple lidar files. each lidar file is a single lidar frame file which are listed inside of source-list. Each item’s keyname is the timestamp(millisecond) of the lidar frame.

An example of data_config_file.

source-list:
  - 0: /opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream-3d-lidar-sensor-fusion/data/nuscene/LIDAR_TOP/000000-LIDAR_TOP.bin
  - 50: /opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream-3d-lidar-sensor-fusion/data/nuscene/LIDAR_TOP/000001-LIDAR_TOP.bin
  - 100: /opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream-3d-lidar-sensor-fusion/data/nuscene/LIDAR_TOP/000002-LIDAR_TOP.bin

Custom Dataloader libnvds_3d_dataloader_realsense Configuration Specifications#

Configuration for Realsense Dataloader Header:

name: realsense_dataloader
type: ds3d::dataloader
out_caps: ds3d/datamap
custom_lib_path: libnvds_3d_dataloader_realsense.so
custom_create_function: createRealsenseDataloader

libnvds_3d_dataloader_realsense.so requires you to install librealsense2 SDK. For x86, follow the instructions from IntelRealSense/librealsense. For Jetson platform, follow the instructions from IntelRealSense/librealsense.

libnvds_3d_dataloader_realsense config_body fields#

Property

Meaning

Type and Range

Example

streams

Specify which streams to enable

List[String], select from [color, depth]

streams: [color, depth]

aligned_image_to_depth

Indicate whether color image is aligned to depth

Boolean

aligned_image_to_depth: False

Custom datafilter libnvds_3d_depth2point_datafilter Configuration Specifications#

Convert 2D depth data into 3D point-cloud(XYZ) data into ds3d::datamap

  • Configuration for Depth to Points Header:

name: depth2points
type: ds3d::datafilter
in_caps: ds3d/datamap
out_caps: ds3d/datamap
custom_lib_path: libnvds_3d_depth2point_datafilter.so
custom_create_function: createDepth2PointFilter
libnvds_3d_depth2point_datafilter config_body fields#

Property

Meaning

Type and Range

Example

streams

Specify which streams to enable

List[String], select from [color, depth]

streams: [color, depth]

max_points

Indicate maximum 3d points to allocate

Uint32

max_points: 407040

mem_pool_size

Indicate max buffer pool size

Uint32

mem_pool_size: 8

Custom datarender libnvds_3d_gles_ensemble_render Configuration Specifications#

Renders 3D scene using OpenGL ES (GLES) with various elements (textures, LiDAR points, bounding boxes) within a single window, allowing for flexible layout customization. Users can split the windows into multiple views, and project each tensor data or frame from ds3d::datamap into a seperate view or into multiple views at the same time. It could also support overlay if multi frames rendered into a single view positon overlap, it depends on the render graph order.

  • Configuration Header

name: ds3d_sensor_fusion_render
type: ds3d::datarender
in_caps: ds3d/datamap
custom_lib_path: libnvds_3d_gles_ensemble_render.so
custom_create_function: NvDs3D_CreateGlesEnsembleRender
  • Configuration Body

An example of a multi-view config with render_graph. There are 2 views rendered with different frames inside the same ds3d::datamap. The 2D color image is rendered by texture3d_render into view area [0, 0, 640, 360]; The Lidar data is rendered by lidar3d_render into view area [640, 0, 1280, 360].

config_body:
  window_width: 1280 # window size
  window_height: 360 # window size
  color_clear: true
  window_title: DS3D-Lidar-6-Cameras-BEVFusion
  render_graph:
    - texture3d_render: # 2D texture view
        layout: [0, 0, 640, 360] # layout [x0, y0, x1, y1]
        max_vertex_num: 6
        color_clear: false
        texture_frame_key: DS3D::ColorFrame_2 # image data key
    - lidar3d_render: # lidar top view
        layout: [640, 0, 1280, 360] # layout [x0, y0, x1, y1]
        color_clear: false
        view_position: [0, 0, 30]
        view_target: [0, 0, 0]
        view_up: [0, 1, 0]
        lidar_color: [0, 0, 255]
        lidar_data_key: DS3D::LidarXYZI
        lidar_bbox_key: DS3D::Lidar3DBboxRawData
        element_size: 4
libnvds_3d_gles_ensemble_render config_body fields#

Property

Meaning

Type and Range

Example

window_title

Specify window title

string

window_title: DS3D-Lidar-6-Cameras-BEVFusion

window_width

Specify window width

uint32

window_width: 1920

window_height

Specify window height

uint32

window_height: 1080

color_clear

Specify whether to clear up the whole window when new frame arrive

bool

color_clear: true

render_graph

Specify a list of multiple renders in different views

List[Dict]

render_graph:
 - texture3d_render:
    layout: [0, 0, 640, 360]
    color_clear: false
    texture_frame_key: DS3D::ColorFrame
 - lidar3d_render:
    layout:  [640, 0, 1280, 360]
    color_clear: false
    lidar_data_key: DS3D::LidarXYZI
  • Render graph render_graph

It supports 2 different modes of views

  • texture3d_render, it renders 2D image data into a specified view area.

  • lidar3d_render, it renders lidar data and 3D bbox data into a specified view area.

Each mode could be configured multiple times in the same render_graph. Multiple camera data inside a single ds3d::datamap could be configured into different view area. Similarly, multiple lidar data insdie the same ds3d::datamap could also be configured at different viewpoint(topview, front-view, side-view) into different view area.

  • Configuration Specifications of texture3d_render

libnvds_3d_gles_ensemble_render texture3d_render fields#

Property

Meaning

Type and Range

Example

layout

Specify the view location for [x0, y0, x1, y1]

List[Float]

layout: [0, 0, 640, 360] x0 = 0; y0 = 0; x1 = 640; y1 = 360;

color_clear

Indicate whether to clear up this view before new frame came.

bool

color_clear: false

texture_frame_key

Specify texture image keyname from ds3d::datamap

string

texture_frame_key: DS3D::ColorFrame_1+1

max_vertex_num

Specify vertex_num used for the texture drawing, default value 6

uint32

max_vertex_num: 6

texture_vetex_key

Specify 3D vertex key name from ds3d::datamap, it’s used for the texture drawing, there are 6 values by default.

string

texture_vetex_key: DS3D::TextureVertexKey

texture_coord_key

Specify texture coordinate key name from ds3d::datamap, it’s used for the texture drawing, there are 6 values by default.

string

texture_coord_key: DS3D::TextureCoordKey

  • Configuration Specifications of lidar3d_render

libnvds_3d_gles_ensemble_render lidar3d_render fields#

Property

Meaning

Type and Range

Example

layout

Specify the view location for [x0, y0, x1, y1]

List[Float]

layout: [0, 0, 640, 360] x0 = 0; y0 = 0; x1 = 640; y1 = 360;

color_clear

Indicate whether to clear up this view before new frame came.

bool

color_clear: false

lidar_color

Specify lidar data color RGB

list[uint8]

lidar_color: [0, 0, 255]

lidar_data_key

Specify lidar data keyname from ds3d::datamap

string

lidar_data_key: DS3D::LidarXYZI+0

element_size

Specify lidar data element size. choose from [3, 4], default value 4 is for xyzi. value 3 is for xyz.

uint32

element_size: 4

lidar_bbox_key

Specify 3D detection bounding-box key name from ds3d::datamap

string

lidar_bbox_key: DS3D::Lidar3DBboxRawData

project_lidar_to_image

Indicate whether need project lidar data and bounding-box into camera image, default value: false

bool

project_lidar_to_image: false

intrinsics_mat_key

Specify camera intrinsics matrix key name from ds3d::datamap, It’s needed when project_lidar_to_image: true

intrinsics_mat_key: DS3D::Cam2_IntrinsicMatrix

extrinsics_mat_key

Specify lidar extrinsics matrix key name from ds3d::datamap

extrinsics_mat_key: DS3D::LidarToCam2_ExtrinsicMatrix

image_width

Specify original camera intrinsic image width, this is needed when project_lidar_to_image: true

image_width: 1600

image_height

Specify original camera intrinsic image height, this is needed when project_lidar_to_image: true

image_height: 900

view_position

Specify view position [x, y, z]coordinates

List[Float]

view_position: [0, 0, -1]

view_target

Specify view target [x, y, z]coordinates

List[Float]

view_target: [0, 0, 1]

view_up

Specify view up direction [x, y, z]coordinates

List[Float]

view_up: [0, -1.0, 0]

perspective_near

Specify perspective projection near plane

Float

perspective_near: 0.1

perspective_far

Specify perspective projection far plane

Float

perspective_far: 10.0

perspective_fov

Specify perspective projection field of view, degree angle

Float

perspective_fov: 40.0

perspective_ratio

Specify perspective ratio for width/height. default 0.0f means view-width/view-height

Float

perspective_ratio: 0.0

enable_label

Indicate whether label text render enabled. default value: false

bool

enable_label: true

Custom datarender libnvds_3d_gl_datarender Configuration Specifications#

Configuration Common header for libnvds_3d_gl_datarender:

name: depth-point-render
type: ds3d::datarender
in_caps: ds3d/datamap
custom_lib_path: libnvds_3d_gl_datarender.so

Configuration Body for Common Part:

libnvds_3d_gl_datarender config_body common fields#

Property

Meaning

Type and Range

Example

title

Specify window title

String

title: ds3d-point-cloud-test

streams

Indicate which streams to render. depth render must have [depth], 3D points render must have [points]

List[String], select from [color, depth, points]

streams: [color, depth]

width

Specify window width

UINT32

width: 1280

height

Specify window height

UINT32

height: 720

block

Indicate rendering thread as block mode

Boolean

block: True

  • Configuration Header for Point Cloud Render:

name: point-3D-render
type: ds3d::datarender
in_caps: ds3d/datamap
custom_lib_path: libnvds_3d_gl_datarender.so
custom_create_function: createPointCloudDataRender # specific function for 3D point rendering
  • Configuration Header for Lidar data Render:

name: lidar-data-render
type: ds3d::datarender
in_caps: ds3d/datamap
custom_lib_path: libnvds_3d_gl_datarender.so
custom_create_function: createLidarDataRender # specific function for Lidar point cloud rendering
  • Configuration Body for 3D Point Cloud and Lidar Render Part:

For more details on 3D coordinate system, refer to https://learnopengl.com/Getting-started/Coordinate-Systems. To know the value meanings for view_position, view_target and view_up,refer to the gluLookAt here: https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml. To know the value meanings for near, far and fov, refer to the gluPerspective here: https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml.

libnvds_3d_gl_datarender Point Cloud Render config_body Fields#

Property

Meaning

Type and Range

Example

view_position

Specify view position [x, y, z]coordinates

List[Float]

view_position: [0, 0, -1]

view_target

Specify view target [x, y, z]coordinates

List[Float]

view_target: [0, 0, 1]

view_up

Specify view up direction [x, y, z]coordinates

List[Float]

view_up: [0, -1.0, 0]

near

Specify perspective projection near plane

Float

near: 0.01

far

Specify perspective projection far plane

Float

far: 10.0

fov

Specify perspective projection field of view, degree angle

Float

fov: 40.0

coord_y_opposite

Specify texture map V direction, Realsense coordinates is different from GLES default coordinates

Boolean

coord_y_opposite: False

positive_z_only

Specify whether display negtive depth values

Boolean

positive_z_only: False

  • Configuration Body for Lidar Render Specific Part:

libnvds_3d_gl_datarender Lidar Render extra config_body Fields#

Property

Meaning

Type and Range

Example

view_position

Specify view position [x, y, z]coordinates

List[Float]

view_position: [0, 0, -1]

view_target

Specify view target [x, y, z]coordinates

List[Float]

view_target: [0, 0, 1]

view_up

Specify view up direction [x, y, z]coordinates

List[Float]

view_up: [0, -1.0, 0]

near

Specify perspective projection near plane

Float

near: 0.01

far

Specify perspective projection far plane

Float

far: 10.0

fov

Specify perspective projection field of view, degree angle

Float

fov: 40.0

lidar_color

Specify lidar data color for display

List[Uint32]

lidar_color: [0, 255, 0]

element_size

Specify lidar data element size. e.g. 4 for XYZI or 3 for XYZ

Uint32

element_size: 4

lidar_data_key

Specify lidar data frame in datamap, default value is DS3D::LidarXYZI

String

lidar_data_key: DS3D::LidarXYZI

lidar_bbox_key

Specify lidar 3D bounding box data in datamap, default value is DS3D::Lidar3DBboxRawData

String

lidar_bbox_key: DS3D::Lidar3DBboxRawData

  • Configuration Header for Depth and Color 2D Render:

name: depth-2D-render
type: ds3d::datarender
in_caps: ds3d/datamap
custom_lib_path: libnvds_3d_gl_datarender.so
custom_create_function: createDepthStreamDataRender # specific function for 2D depth rendering
  • Configuration Body for Depth and Color 2D Specific Part:

libnvds_3d_gl_datarender 2D Depth Render config_body Fields#

Property

Meaning

Type and Range

Example

min_depth

Specify minimum depth value. other values less that it will be removed in rendering

Float

min_depth: 0.3

max_depth

Specify maximum depth value. other values less that it will be removed in rendering

Float

max_depth: 2.0

min_depth_color

Specify minimum depth rendering color in [R, G, B]

List[Uint32]

min_depth_color: [255, 128, 0]

max_depth_color

Specify maximum depth rendering color in [R, G, B]

Float

max_depth_color: [0, 128, 255]

libnvds_3d_depth_datasource Depth file source Specific Configuration Specifications#

Configuration header:

name: depthfilesource
type: ds3d::dataloader
out_caps: ds3d/datamap, framerate=30/1
custom_lib_path: libnvds_3d_depth_datasource.so
custom_create_function: createDepthColorLoader

Configuration body:

libnvds_3d_depth_datasource Depth file source config_body Fields#

Property

Meaning

Type and Range

Example

depth_source

Specify file path for depth source

String

depth_source: depth_uint16_640x480.bin

color_source

Specify file path for color image source

String

color_source: color_rgba_1920x1080.bin

depth_scale

Indicate depth unit in meters per each depth value

Float

depth_scale: 0.0010

depth_datatype

Indicate depth datatype, only [uint16] is supported for this version

String, Values must be uint16

depth_datatype: uint16

depth_size

Indicate depth resolutions in [width, height]

List[Uint32], must be [width, height]

depth_size: [640, 480]

color

Indicate color format. only rgba is supported

String. Value must be rgba

color: rgba

color_size

Indicate color resolutions in [width, height]

List[Uint32], must be [width, height]

color_size: [1920, 1080]

depth_intrinsic

Indicate depth sensor intrinsic parameter groups

Intrinsic Configuration Group

depth_intrinsic:

width: 848 height: 480 centerX: 424.06073 centerY: 237.75032 fx: 422.513062 fy: 422.513062

color_intrinsic

Indicate color sensor intrinsic parameter groups

Intrinsic Configuration Group

color_intrinsic:

width: 1920 height: 1080 centerX: 964.288086 centerY: 533.287354 fx: 1358.21423 fy: 1358.2533

depth_to_color_extrinsic

Indicate extrinsic parameters from depth sensor to color sensor

Extrinsic Configuration Group

depth_to_color_extrinsic:

rotation: [1, -0.0068, 0.0010, 0.0068, 1, 0, -0.0010, 0, 1] translation: [0.01481, -0.0001, 0.0002]

Configuration Body for Intrinsic Parameters :

libnvds_3d_depth_datasource Intrinsic Parameters in Depth file source config_body Fields#

Property

Meaning

Type and Range

Example

width

Specify sensor width in pixels

Uint32

width: 848

height

Specify sensor height in pixels

Uint32

height: 480

centerX

Specify coordinate axis position in pixels in horizontal direction

Float

centerX: 424.06

centerY

Specify coordinate axis position in pixels in vertical direction

Float

centerY: 533.28

fx

Specify focal length in pixels in X direction

Float

fx: 1358.21

fy

Specify focal length in pixels in Y direction

Float

fy: 1358.25

Configuration Body for Extrinsic Parameters:

libnvds_3d_depth_datasource Extrinsic Parameters in Depth file source config_body Fields#

Property

Meaning

Type and Range

Example

rotation

Specify an extrinsic 3x3 matrix for rotation. Values in Column-major order

List[Float], Values in Column-major order

rotation: [1, -0.0068, 0.0010, 0.0068, 1, 0, -0.0010, 0, 1]

translation

Specify an extrinsic 3x1 matrix for translation. Values in Column-major order

List[Float], Values in Column-major order

translation: [0.01481, -0.0001, 0.0002]