Installation#
NVIDIA® DeepStream Software Development Kit (SDK) is an accelerated AI framework to build intelligent video analytics (IVA) pipelines. DeepStream runs on NVIDIA® T4, NVIDIA® Hopper, NVIDIA® Ampere, NVIDIA® ADA and platforms such as NVIDIA® Jetson AGX Orin™, NVIDIA® Jetson Orin™ NX, NVIDIA® Jetson Orin™ Nano. For dGPU platforms Enterprise GPUs are highly recommended for deployments that are expected to run 24x7. Gaming GPUs are not designed to perform in such type of environments.
Jetson Setup#
This section explains how to prepare a Jetson device before installing the DeepStream SDK.
Note
Steps to install DeepStream SDK locally, assume that ~/.local/bin/
has been added to the ~/.bashrc
or ~/.profile
Install Jetson SDK components#
Download NVIDIA SDK Manager from https://developer.nvidia.com/embedded/jetpack. You will use this to install JetPack 6.1 GA (corresponding to L4T 36.4 release)
NVIDIA SDK Manager is a graphical application which flashes and installs the JetPack packages.
The flashing procedure takes approximately 10-30 minutes, depending on the host system.
Note
If you are using Jetson Orin nano developer kit, you can download the SD card image from https://developer.nvidia.com/embedded/jetpack. This comes packaged with CUDA, TensorRT and cuDNN.
Prerequisites#
Note
Sometimes while running gstreamer pipeline or sample apps,
user can encounter error : GLib (gthread-posix.c): Unexpected error from C library during 'pthread_setspecific': Invalid argument. Aborting.
The issue is caused because of a bug in glib 2.0-2.72 version which comes with ubuntu22.04 by default.
The issue is addressed in glib2.76 and its installation is required to fix the issue (GNOME/glib).
Migrate glib to newer version#
In order to migrate to newer glib version (e.g. 2.76.6) follow below steps:
Prerequisites: Install below packages:
pip3 install meson pip3 install ninja
Note
On baremetal, use sudo pip3 install meson
and sudo pip3 install ninja
for root permissions
Compilation and installation steps:
$ git clone https://github.com/GNOME/glib.git $ cd glib $ git checkout <glib-version-branch> # e.g. 2.76.6 $ meson build --prefix=/usr $ ninja -C build/ $ cd build/ $ ninja install
Note
On baremetal, use sudo ninja install
to install with root permissions
Check and confirm the newly installed glib version:
pkg-config --modversion glib-2.0
Install Dependencies#
Install prerequisite packages#
Enter the following commands to install the prerequisite packages:
$ sudo apt install \
libssl3 \
libssl-dev \
libgstreamer1.0-0 \
gstreamer1.0-tools \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
libgstreamer-plugins-base1.0-dev \
libgstrtspserver-1.0-0 \
libjansson4 \
libyaml-cpp-dev
Note
Sometimes with RTSP streams the application gets stuck on reaching EOS. This is because of an issue in rtpjitterbuffer component.
To fix this issue, a script “update_rtpmanager.sh” at /opt/nvidia/deepstream/deepstream/
has been provided with
required details to update gstrtpmanager library. The script should be executed once above mentioned packages are
installed as prerequisite.
Install librdkafka (to enable Kafka protocol adaptor for message broker)#
Clone the librdkafka repository from GitHub:
$ git clone https://github.com/confluentinc/librdkafka.git
Configure and build the library:
$ cd librdkafka $ git checkout tags/v2.2.0 $ ./configure --enable-ssl $ make $ sudo make install
Copy the generated libraries to the deepstream directory:
$ sudo mkdir -p /opt/nvidia/deepstream/deepstream/lib $ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream/lib $ sudo ldconfig
Install latest NVIDIA BSP packages#
Installation of JetPack 6.1 GA will ensure that latest NVIDIA BSP packages are installed.
Install the DeepStream SDK#
Method 1: Using SDK Manager
Select
DeepStreamSDK
from theAdditional SDKs
section along with JP 6.1 GA software components for installation.Method 2: Using the DeepStream tar package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Download the DeepStream 7.1 Jetson tar package
deepstream_sdk_v7.1.0_jetson.tbz2
to the Jetson device.Enter the following commands to extract and install the DeepStream SDK:
$ sudo tar -xvf deepstream_sdk_v7.1.0_jetson.tbz2 -C / $ cd /opt/nvidia/deepstream/deepstream-7.1 $ sudo ./install.sh $ sudo ldconfig
Method 3: Using the DeepStream Debian package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Download the DeepStream 7.1 Jetson Debian package
deepstream-7.1_7.1.0-1_arm64.deb
to the Jetson device. Enter the following command:$ sudo apt-get install ./deepstream-7.1_7.1.0-1_arm64.deb
Method 4: Use Docker containers
DeepStream docker containers are available on NGC. See the Docker Containers section to learn about developing and deploying DeepStream using docker containers.
Note
Verification: Once DeepStream SDK installation is successful, refer to Expected output (deepstream-app) for the expected output.
dGPU Setup for Ubuntu#
This section explains how to prepare an Ubuntu x86_64
system with NVIDIA dGPU devices before installing the DeepStream SDK.
Note
Steps to install DeepStream SDK locally, assume that ~/.local/bin/
has been added to the ~/.bashrc
or ~/.profile
Note
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA Tesla® T4, NVIDIA® Hopper, NVIDIA® Ampere, NVIDIA® ADA, NVIDIA GeForce® RTX 2080, NVIDIA GeForce® RTX 3080, NVIDIA GeForce® RTX 4080 and GeForce®/NVIDIA RTX/QUADRO. This version of DeepStream SDK runs on GPUs supported by NVIDIA driver 535.183.06 for Data Center GPUs and 560.35.03 for RTX GPUs and NVIDIA TensorRT™ 10.3.0.26 and later versions.
Prerequisites#
You must install the following components:
Ubuntu 22.04
GStreamer 1.20.3
NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs)
CUDA 12.6
TensorRT 10.3.0.26
Remove all previous DeepStream installations#
Enter the following commands to remove all previous DeepStream 3.0 or prior installations:
$ sudo rm -rf /usr/local/deepstream /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libgstnv* /usr/bin/deepstream* /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libnvdsgst*
/usr/lib/x86_64-linux-gnu/gstreamer-1.0/deepstream*
/opt/nvidia/deepstream/deepstream*
$ sudo rm -rf /usr/lib/x86_64-linux-gnu/libv41/plugins/libcuvidv4l2_plugin.so
To remove DeepStream 4.0 or later installations:
Open the
uninstall.sh
file in/opt/nvidia/deepstream/deepstream/
Run the following script as
sudo ./uninstall.sh
Note
Sometimes while running gstreamer pipeline or sample apps,
user can encounter error : GLib (gthread-posix.c): Unexpected error from C library during 'pthread_setspecific': Invalid argument. Aborting.
The issue is caused because of a bug in glib 2.0-2.72 version which comes with ubuntu22.04 by default.
The issue is addressed in glib2.76 and its installation is required to fix the issue (GNOME/glib).
Migrate glib to newer version#
In order to migrate to newer glib version (e.g. 2.76.6) follow below steps:
Prerequisites: Install below packages:
pip3 install meson pip3 install ninja
Note
On baremetal x86, use sudo pip3 install meson
and sudo pip3 install ninja
for root permissions
Compilation and installation steps:
$ git clone https://github.com/GNOME/glib.git $ cd glib $ git checkout <glib-version-branch> # e.g. 2.76.6 $ meson build --prefix=/usr $ ninja -C build/ $ cd build/ $ ninja install
Note
On baremetal x86, use sudo ninja install
to install with root permissions
Check and confirm the newly installed glib version:
pkg-config --modversion glib-2.0
Install Dependencies#
Install prerequisite packages#
Enter the following commands to install the necessary packages before installing the DeepStream SDK:
$ sudo apt install \
libssl3 \
libssl-dev \
libgles2-mesa-dev \
libgstreamer1.0-0 \
gstreamer1.0-tools \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
libgstreamer-plugins-base1.0-dev \
libgstrtspserver-1.0-0 \
libjansson4 \
libyaml-cpp-dev \
libjsoncpp-dev \
protobuf-compiler \
gcc \
make \
git \
python3
Note
Sometimes with RTSP streams the application gets stuck on reaching EOS. This is because of an issue in rtpjitterbuffer component.
To fix this issue,a script “update_rtpmanager.sh” at /opt/nvidia/deepstream/deepstream/
has been provided with
required details to update gstrtpmanager library. The script should be executed once above mentioned packages are
installed as prerequisite.
Install CUDA Toolkit 12.6#
Run the following commands (reference, https://developer.nvidia.com/cuda-downloads):
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
$ sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
$ sudo apt-get update
$ sudo apt-get install cuda-toolkit-12-6
Note
If you observe following errors while CUDA installation, refer to https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key/.
W: GPG error: https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC
E: The repository 'https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64 InRelease' is no longer signed.
Install NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs)#
Download and install using NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs) from NVIDIA Unix drivers page at: https://www.nvidia.cn/Download/driverResults.aspx/222416/en-us/
Run the following commands:
For Data Center GPUs: $ chmod 755 NVIDIA-Linux-x86_64-535.183.06.run $ sudo ./NVIDIA-Linux-x86_64-535.183.06.run --no-cc-version-check For RTX GPUs: $ chmod 755 NVIDIA-Linux-x86_64-560.35.03.run $ sudo ./NVIDIA-Linux-x86_64-560.35.03.run --no-cc-version-check
Note
Ensure gdm, lightdm or Xorg service is stopped while installing nvidia driver
Use command : sudo service gdm stop
sudo service lightdm stop
sudo pkill -9 Xorg
Install TensorRT 10.3.0.26#
Run the following command to install TensorRT 10.3.0.26:
version="10.3.0.26-1+cuda12.5" sudo apt-get install libnvinfer-dev=${version} libnvinfer-dispatch-dev=${version} libnvinfer-dispatch10=${version} libnvinfer-headers-dev=${version} libnvinfer-headers-plugin-dev=${version} libnvinfer-lean-dev=${version} libnvinfer-lean10=${version} libnvinfer-plugin-dev=${version} libnvinfer-plugin10=${version} libnvinfer-vc-plugin-dev=${version} libnvinfer-vc-plugin10=${version} libnvinfer10=${version} libnvonnxparsers-dev=${version} libnvonnxparsers10=${version} tensorrt-dev=${version}Note
It is assumed, “deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/” has been added, as mentioned in CUDA Toolkit 12.6 installation step.
libnvparsers are deprecated since TRT 9.0.
Install librdkafka (to enable Kafka protocol adaptor for message broker)#
Clone the librdkafka repository from GitHub:
$ git clone https://github.com/confluentinc/librdkafka.git
Configure and build the library:
$ cd librdkafka $ git checkout tags/v2.2.0 $ ./configure --enable-ssl $ make $ sudo make install
Copy the generated libraries to the deepstream directory:
$ sudo mkdir -p /opt/nvidia/deepstream/deepstream/lib $ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream/lib $ sudo ldconfig
Install the DeepStream SDK#
Method 1: Using the DeepStream Debian package
Download the DeepStream 7.1 dGPU Debian package
deepstream-7.1_7.1.0-1_amd64.deb
: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstreamEnter the command:
$ sudo apt-get install ./deepstream-7.1_7.1.0-1_amd64.deb
Method 2: Download the DeepStream tar package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Navigate to the location of the downloaded DeepStream package to extract and install the DeepStream SDK:
$ sudo tar -xvf deepstream_sdk_v7.1.0_x86_64.tbz2 -C / $ cd /opt/nvidia/deepstream/deepstream-7.1/ $ sudo ./install.sh $ sudo ldconfig
Method 3: Use Docker containers
DeepStream docker containers are available on NGC. See the Docker Containers section to learn about developing and deploying DeepStream using docker containers.
Note
Verification: Once DeepStream SDK installation is successful, refer to Expected output (deepstream-app) for the expected output.
IGX/dGPU on ARM Setup for Ubuntu (Alpha)#
This section explains how to prepare a NVIDIA IGX system with NVIDIA dGPU devices before installing the DeepStream SDK.
Note
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA RTX A6000 and NVIDIA RTX 6000 Ada. This version of DeepStream SDK has been validated with NVIDIA driver 535.183.01 and NVIDIA TensorRT™ 10.3.0.26.
You must install the following components:
Please refer IGX-Software Install Guide for installing Base-OS: IGX-Software Guide
Docker
Nvidia Container Toolkit
Run ARM SBSA docker on IGX/dGPU#
Pull the DeepStream Triton Inference Server docker
docker pull nvcr.io/nvidia/deepstream:7.1-triton-arm-sbsa
Start the docker
sudo docker run -it --rm --runtime=nvidia --network=host -e NVIDIA_DRIVER_CAPABILITIES=compute,utility,video,graphics --gpus all --privileged -e DISPLAY=:0 -v /tmp/.X11-unix:/tmp/.X11-unix -v /etc/X11:/etc/X11 nvcr.io/nvidia/deepstream:7.1-triton-arm-sbsa
Known Limitation with Video Subsystem and Workaround#
DeepStream 7.1 supports Cuda-12.6 in the compute stack and also in the docker container by default. Data Center GPUs are currently only supported by driver 535.183.06, which comes with Cuda-12.2 driver by default.
Even though CUDA supports forward compatibility with newer runtime versions like Cuda-12.6, other components such as Cuda-GL Interop do not support forward compatibility which are required for display sink to work. Hence, for other components such as Cuda-GL Interop to work, Cuda-12.2 toolkit also must be installed alongside Cuda-12.6 runtime inside the docker container.
For users who need to use/enable display output, following steps can be utilized inside the docker to implement this workaround:
Start the docker as shown in the step above.
Install cuda-toolkit-12-2. Please follow these instructions
PLEASE NOTE
: From the Cuda-12 installation instructions mentioned in link above, please replace :sudo apt-get -y install cuda
withsudo apt-get -y install cuda-toolkit-12-2
Change default CUDA version to point to Cuda-12.2 inside the docker using update alternatives:
update-alternatives --set cuda /usr/local/cuda-12.2
To check which version of CUDA is currently in use inside the docker, run :
update-alternatives --display cuda
dGPU on ARM Setup for Ubuntu (Alpha)#
This section explains how to prepare an Ubuntu aarch64
system with NVIDIA dGPU devices before installing the DeepStream SDK.
Note
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA Tesla T4, NVIDIA Hopper, NVIDIA Ampere, NVIDIA® ADA, NVIDIA GeForce GTX 1080, NVIDIA GeForce RTX 2080, NVIDIA GeForce RTX 3080, NVIDIA GeForce RTX 4080 and GeForce/NVIDIA RTX/QUADRO. This version of DeepStream SDK runs on GPUs supported by NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs) and NVIDIA TensorRT™ 10.3.0.26.
You must install the following components:
NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs)
Docker
Nvidia Container Toolkit
Please note: GH200 has been validated with Nvidia Driver 550 using Base-OS
Install NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs)#
Download and install using NVIDIA driver 535.183.06 (for Data Center GPUs) and 560.35.03 (for RTX GPUs) from NVIDIA Unix drivers page at: https://www.nvidia.com/en-us/drivers/unix/linux-aarch64-archive/
Run the following commands:
For Data Center GPUs: $ chmod 755 NVIDIA-Linux-aarch64-535.183.06.run $ sudo ./NVIDIA-Linux-aarch64-535.183.06.run --no-cc-version-check For RTX GPUs: $ chmod 755 NVIDIA-Linux-aarch64-560.35.03.run $ sudo ./NVIDIA-Linux-aarch64-560.35.03.run --no-cc-version-check
Note
Ensure gdm, lightdm or Xorg service is stopped while installing Nvidia driver
Use command : sudo service gdm stop
sudo service lightdm stop
sudo pkill -9 Xorg
Run dGPU on ARM Docker (SBSA)#
Pull the DeepStream Triton Inference Server docker
docker pull nvcr.io/nvidia/deepstream:7.1-triton-arm-sbsa
Start the docker
sudo docker run -it --rm --runtime=nvidia --network=host -e NVIDIA_DRIVER_CAPABILITIES=compute,utility,video,graphics --gpus all --privileged -e DISPLAY=:0 -v /tmp/.X11-unix:/tmp/.X11-unix -v /etc/X11:/etc/X11 nvcr.io/nvidia/deepstream:7.1-triton-arm-sbsa
Known Limitation with Video Subsystem and Workaround#
DeepStream 7.1 supports Cuda-12.6 in the compute stack and also in the docker container by default. Data Center GPUs are currently only supported by driver 535.183.06, which comes with Cuda-12.2 driver by default.
Even though CUDA supports forward compatibility with newer runtime versions like Cuda-12.6, other components such as Cuda-GL Interop do not support forward compatibility which are required for display sink to work. Hence, for other components such as Cuda-GL Interop to work, Cuda-12.2 toolkit also must be installed along with the default Cuda-12.6 runtime inside the docker container.
For users who need to use/enable display output, following steps can be utilized inside the docker to implement this workaround:
Start the docker as shown in the step above.
Install cuda-toolkit-12-2. Please follow these instructions
PLEASE NOTE
: From the Cuda-12 installation instructions mentioned in link above, please replace :sudo apt-get -y install cuda
withsudo apt-get -y install cuda-toolkit-12-2
Change default CUDA version to point to Cuda-12.2 inside the docker using update alternatives:
update-alternatives --set cuda /usr/local/cuda-12.2
To check which version of CUDA is currently in use inside the docker, run :
update-alternatives --display cuda
Note
dGPU Setup for RedHat Enterprise Linux (RHEL)#
DeepStream for RHEL is not supported in this release.
Platform and OS Compatibility#
The following table provides information about platform and operating system compatibility in the current and earlier versions of DeepStream.
# DS release
DS 6.1
DS 6.1.1
DS 6.2
DS 6.3
DS 6.4
DS 7.0
DS 7.1
Jetson platforms
AGX Xavier, Jetson NX, Jetson Orin
AGX Xavier, Jetson NX, Jetson Orin
Xavier AGX , Xavier NX, AGX Orin, Orin NX
Xavier AGX , Xavier NX, AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
OS
L4T Ubuntu 20.04
L4T Ubuntu 20.04
L4T Ubuntu 20.04
L4T Ubuntu 20.04
L4T Ubuntu 22.04
L4T Ubuntu 22.04
L4T Ubuntu 22.04
JetPack release
5.0.1 DP
5.0.2 GA Revision 1
5.1 GA
5.1.2 GA
6.0 DP
6.0 GA
6.1 GA
L4T release
34.1.1
35.1
35.2.1
35.4
36.2
36.3
36.4
CUDA release
CUDA 11.4
CUDA 11.4
CUDA 11.4
CUDA 11.4
CUDA 12.2
CUDA 12.2
CUDA 12.6
cuDNN release
cuDNN 8.3.2.49
cuDNN 8.4.1.50+
cuDNN 8.6.0.166+
cuDNN 8.6.0.166+
cuDNN 8.9.4.25+
cuDNN 8.9.4.25+
cuDNN 9.3.0
TensorRT release
TRT 8.4.0.11
TRT 8.4.1.5
TRT 8.5.2.2
TRT 8.5.2.2
TRT 8.6.2.3
TRT 8.6.2.3
TRT 10.3.0.31
OpenCV release
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.5.4
OpenCV 4.8.0
OpenCV 4.8.0
OpenCV 4.8.0
VisionWorks
NA
NA
NA
NA
NA
NA
NA
GStreamer
GStreamer 1.16.2
GStreamer 1.16.2
GStreamer 1.16.3
GStreamer 1.16.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.20.3
Docker image
deepstream-l4t:6.1
deepstream-l4t:6.1.1
deepstream-l4t:6.2
deepstream-l4t:6.3
deepstream:6.4
deepstream:7.0
deepstream:7.1
# DS release
DS 6.1
DS 6.1.1
DS 6.2
DS 6.3
DS 6.4
DS 7.0
DS 7.1
GPU platforms
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0)
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0)
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
OS
Ubuntu 20.04
Ubuntu 20.04
Ubuntu 20.04
Ubuntu 20.04
Ubuntu 22.04
Ubuntu 22.04
Ubuntu 22.04
GCC
GCC 9.4.0
GCC 9.4.0
GCC 9.4.0
GCC 9.4.0
GCC 11.4.0
GCC 11.4.0
GCC 11.4.0
CUDA release
CUDA 11.6.1
CUDA 11.7.1
CUDA 11.8
CUDA 12.1
CUDA 12.2
CUDA 12.2
CUDA 12.6
cuDNN release
cuDNN 8.4.0.27
cuDNN 8.4.1.50+
cuDNN 8.7.0.84-1+
cuDNN 8.8.1.3-1+
cuDNN 8.9.4.25-1+
cuDNN 8.9.6.50-1+
cuDNN 9.3.0
TRT release
TRT 8.2.5.1
TRT 8.4.1.5
TRT 8.5.2.2
TRT 8.5.3.1
TRT 8.6.1.6
TRT 8.6.1.6
TRT 10.3.0.26
Display Driver
R510.47.03
R515.65.01
R525.85.12
R525.125.06
R535.104.12
R535.161.08
R535.183.06(Data Center GPUs), R560.35.03(RTX GPUs)
VideoSDK release
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
OFSDK release
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
GStreamer release
GStreamer 1.16.2
GStreamer 1.16.2
GStreamer 1.16.3
GStreamer 1.16.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.20.3
OpenCV release
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.5.4
OpenCV 4.5.4
OpenCV 4.5.4
Docker image
deepstream:6.1
deepstream:6.1.1
deepstream:6.2
deepstream:6.3
deepstream:6.4
deepstream:7.0
deepstream:7.1
NVAIE release
NA
NA
NVAIE-3.x
NVAIE-3.x
NVAIE-4.x
NA
NA
Note
By default, OpenCV has been deprecated. However, OpenCV can be enabled in plugins such as nvinfer (nvdsinfer) and dsexample (gst-dsexample) by setting WITH_OPENCV=1 in the Makefile of these components. Please refer component README for more instructions.
NA: “Not Applicable”
DeepStream 7.1 comes with Alpha support on ARM SBSA platform. This support is currently enabled by SBSA triton docker. SBSA category currently supports IGX/dGPU, GH100 and GH200.