Gst-nvdspostprocess in DeepStream#
The Gst-nvdspostprocess plugin is released in DeepStream 6.1. The plugin supports parsing of various inferencing models in DeepStream SDK. The plugin can perform parsing on the tensors of the output layers provided by the Gst-nvinfer and Gst-nvinferserver. The aim of this document is to provide guidance on how to use the Gst-nvdspostprocess plugin for various inference models.
This document provides details about: The document is divided into four parts.
Detector models such as Yolo V3 and Faster RCNN.
Using classification model as Primary Classification model with Gst-nvinferserver
Also provides a table for using various custom functions that can be used for parsing of output layers.
Detector models#
To use Yolo V3 detector, follow the prerequisite steps mentioned in /opt/nvidia/deepstream/deepstream/sources/objectDetector_Yolo/README
.
Check if the setup is configured correctly by running below test pipelines in following folder
/opt/nvidia/deepstream/deepstream/sources/objectDetector_Yolo/
.
#For dGPU gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_yoloV3.txt ! \ nvvideoconvert ! nvdsosd ! nveglglessink sync=0 #For Jetson gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_yoloV3.txt ! \ nvvideoconvert ! nvdsosd ! nv3dsink sync=0
To update the above pipeline to use the post processing plugin for parsing, the
/opt/nvidia/deepstream/deepstream/sources/objectDetector_Yolo/config_infer_primary_yoloV3.txt
file must be modified by:
changing the
network-type=0
tonetwork-type=100
. By doing this, output post processing is disabled in nvinfer plugin.Set the
output-tensor-meta=1
, nvinfer plugin then attaches the tensor meta to the input buffer.
Store the modified file as
config_infer_primary_yoloV3_modified.txt
. The post processing plugin config file in YAML format has to be created as below.
property: gpu-id: 0 #Set the GPU id process-mode: 1 # Set the mode as primary inference num-detected-classes: 80 # Change according the models output gie-unique-id: 1 # This should match the one set in inference config ## 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering) cluster-mode: 2 # Set appropriate clustering algorithm network-type: 0 # Set the network type as detector labelfile-path: labels.txt # Set the path of labels wrt to this config file parse-bbox-func-name: NvDsPostProcessParseCustomYoloV3 # Set custom parsing function class-attrs-all: # Set as done in the original infer configuration nms-iou-threshold: 0.5 pre-cluster-threshold: 0.7
Save the above config as
config_detector.yml
. The following pipeline can be executed as given below.#For dGPU gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_yoloV3_modified.txt ! \ nvdspostprocess postprocesslib-config-file=config_detector.yml \ postprocesslib-name=/opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so ! nvvideoconvert ! nvdsosd ! nveglglessink sync=0 #For Jetson gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_yoloV3_modified.txt ! \ nvdspostprocess postprocesslib-config-file=config_detector.yml \ postprocesslib-name=/opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so ! nvvideoconvert ! nvdsosd ! \ nv3dsink sync=0Note
The
NvDsPostProcessParseCustomYoloV3
function is defined in/opt/nvidia/deepstream/deepstream/sources/gst-plugins/gst-nvdspostprocess/postprocesslib_impl/post_processor_custom_impl.cpp
Process similar to the above can be followed to demonstrate the usage of Faster RCNN network (/opt/nvidia/deepstream/deepstream/sources/objectDetector_FasterRCNN/README
), with nvdspostprocess plugin with below config_detector.yml
property:
gpu-id: 0 #Set the GPU id
process-mode: 1 # Set the mode as primary inference
num-detected-classes: 21 # Change according the models output
gie-unique-id: 1 # This should match the one set in inference config
## 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering)
cluster-mode: 2 # Set appropriate clustering algorithm
network-type: 0 # Set the network type as detector
labelfile-path: labels.txt # Set the path of labels wrt to this config file
parse-bbox-func-name: NvDsPostProcessParseCustomFasterRCNN # Set custom parsing function FRCNN
class-attrs-all: # Set as done in the original infer configuration
topk: 20
nms-iou-threshold: 0.4
pre-cluster-threshold: 0.5
class-attrs-0:
pre-cluster-threshold: 1.1
The pipeline for running the Faster RCNN network with modified nvinfer config and post process plugin is given below.
#For dGPU
gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \
m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_fasterRCNN_modified.txt ! \
nvdspostprocess postprocesslib-config-file=config_detector.yml postprocesslib-name=/opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so ! \
nvvideoconvert ! nvdsosd ! nveglglessink sync=0
#For Jetson
gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \
m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path=config_infer_primary_fasterRCNN_modified.txt ! \
nvdspostprocess postprocesslib-config-file=config_detector.yml postprocesslib-name=/opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so ! \
nvvideoconvert ! nvdsosd ! nv3dsink sync=0
Primary Classification model#
The primary classification model is demonstrated using the DeepStream Triton Docker Containers on dGPU. Once the docker is running the model repo and classification video should be created.
Note
The script
prepare_classification_test_video.sh
mentioned below requiresffmpeg
to be installed. Some of the low level codec libraries need to be re-installed along with ffmpeg.Use the following command to install/re-install ffmpeg:
apt-get install --reinstall libflac8 libmp3lame0 libxvidcore4 ffmpeg
Execute following commands to download the model repo and create a sample classification video.
cd /opt/nvidia/deepstream/deepstream/samples ./prepare_ds_triton_model_repo.sh apt-get install --reinstall libflac8 libmp3lame0 libxvidcore4 ffmpeg ./prepare_classification_test_video.sh cd /opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app-triton
Check by running following sample classification pipeline
gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/classification_test_video.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! \ nvinferserver config-file-path=config_infer_primary_classifier_densenet_onnx.txt \ ! nvvideoconvert ! nvdsosd ! nveglglessink sync=1Note
To use nveglglessink inside docker ensure
xhost +
done from the host, and set appropriateDISPLAY
environment variable inside the docker.
Now, update the
config_infer_primary_classifier_densenet_onnx.txt
to disable post processing and attaching tensor output meta in nvinferserver. This can be done by updating configuration file with following parametersinfer_config { postprocess { other {} } }
andoutput_control { output_tensor_meta : true }
infer_config { unique_id: 5 gpu_ids: [0] max_batch_size: 1 backend { triton { model_name: "densenet_onnx" version: -1 model_repo { root: "../../triton_model_repo" strict_model_config: true tf_gpu_memory_fraction: 0.0 tf_disable_soft_placement: 0 } } } preprocess { network_format: IMAGE_FORMAT_RGB tensor_order: TENSOR_ORDER_LINEAR maintain_aspect_ratio: 0 frame_scaling_hw: FRAME_SCALING_HW_DEFAULT frame_scaling_filter: 1 normalize { scale_factor: 0.0078125 channel_offsets: [128, 128, 128] } } #Disable post processing in nvinferserver postprocess { other { } } extra { copy_input_to_host_buffers: false output_buffer_pool_size: 2 } } input_control { process_mode: PROCESS_MODE_FULL_FRAME interval: 0 } #Enable attaching output tensor meta in nvinferserver output_control { output_tensor_meta: true }
Save the above config as
config_infer_primary_classifier_densenet_onnx_modified.txt
. Create aconfig_classifier.yml
as given below.
property: gpu-id: 0 network-type: 1 # Type of network i.e. classifier process-mode: 1 # Operate in primary mode i.e. operate on full frame classifier-threshold: 0.2 #Set classifier threshold gie-unique-id: 5 # Set the unique_id matching one in the inference classifier-type: ObjectClassifier # type of classifier labelfile-path: /opt/nvidia/deepstream/deepstream/samples/triton_model_repo/densenet_onnx/densenet_labels.txt #Path of the labels fine
The following pipeline with nvdspostprocess plugin can now be executed to view the classification results
gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/classification_test_video.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinferserver \ config-file-path=config_infer_primary_classifier_densenet_onnx_modified.txt ! \ nvdspostprocess postprocesslib-config-file= config_classifier.yml postprocesslib-name= \ /opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so ! nvvideoconvert ! nvdsosd ! nveglglessink sync=1
Mask RCNN Model#
To use the instance segmentation model follow the README in package /opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models/README.md
to obtain TAO toolkit config files and PeopleSegNet model.
Once setup is done, execute following pipeline to validate the model.
cd /opt/nvidia/deepstream/deepstream/samples/configs/tao_pretrained_models gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! nvinfer config-file-path= config_infer_primary_peopleSegNet.txt ! \ nvvideoconvert ! nvdsosd display-mask=1 process-mode=0 ! nveglglessink sync=0Note
For correct operation ensure the Tensor-RT OSS plugin is compiled and replaced as mentioned in the TAO README.
As mentioned in earlier sections update the nvinfer configuration file to disable post processing and enable attaching tensor output meta. This is done by changing the
network-type=100
andoutput-tensor-meta=1
.Store the file by the name
config_infer_primary_peopleSegNet_modified.txt
. Theconfig_mrcnn.yml
can be created as given below.
property: gpu-id: 0 process-mode: 1 # Process on full frame num-detected-classes: 2 #Total Detected classes gie-unique-id: 1 #Match with gie-unique-id of inference config ## 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering) cluster-mode: 4 # Disable clustering network-type: 3 # Network is instance segmentation labelfile-path: peopleSegNet_labels.txt parse-bbox-instance-mask-func-name: NvDsInferParseCustomMrcnnTLTV2 class-attrs-all: pre-cluster-threshold: 0.8
Following pipeline can be used for testing the nvdspostprocess plugin with MRCNN network, using the above configuration files.
gst-launch-1.0 filesrc location=/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! decodebin ! \ m.sink_0 nvstreammux name=m batch-size=1 width=1920 height=1080 ! \ nvinfer config-file-path= config_infer_primary_peopleSegNet.txt ! \ nvdspostprocess postprocesslib-name= /opt/nvidia/deepstream/deepstream/lib/libpostprocess_impl.so \ postprocesslib-config-file= config_mrcnn.yml ! nvvideoconvert ! nvdsosd display-mask=1 process-mode=0 ! nveglglessink sync=0
Custom Parsing functions#
This section mentions the parsing functions present in postprocess library for available network architectures.
# Custom Parsing Function
Description
NvDsPostProcessParseCustomResnet
Parsing Resnet 10 model packaged in DeepStream
NvDsPostProcessParseCustomTfSSD
Tensorflow/Onnx SSD detector
NvDsPostProcessParseCustomNMSTLT
Parsing TAO Toolkit Open Architecture Models SSD, FRCNN, DSSD, RetinaNet
NvDsPostProcessParseCustomBatchedNMSTLT
Parsing of TAO Toolkit Open Architecture Models Yolo V3, Yolo V4
NvDsPostProcessParseCustomMrcnnTLTV2
Parsing of TAO Toolkit Open Architecture Model MaskRCNN
NvDsPostProcessParseCustomFasterRCNN
Parsing of Faster R-CNN Network
NvDsPostProcessClassiferParseCustomSoftmax
Parsing Resnet 18 vehicle type classifier model packaged in DeepStream
NvDsPostProcessParseCustomSSD
Parsing of SSD Network
NvDsPostProcessParseCustomYoloV3
Parsing of Yolo V3 Network
NvDsPostProcessParseCustomYoloV3Tiny
Parsing of Yolo V3 Tiny Network
NvDsPostProcessParseCustomYoloV2
Parsing of Yolo V2 Network
NvDsPostProcessParseCustomYoloV2Tiny
Parsing of Yolo V2 Tiny Network